EXPLORER; Excitonic Polymer Organic Devices for Energy
探索者;
基本信息
- 批准号:EP/I016635/1
- 负责人:
- 金额:$ 25.69万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We propose three adventurous, cross-disciplinary projects within the area of energy research. The past decade has seen an upsurge in interest in the field of organic electronics. Devices such as light-emitting displays and chemical and physical sensors are already on the market - and probably in your home and in your pocket - while others, such as solar cells are developing fast. The motivation is the reduced cost, ease of manufacture, large-area capability and the enhanced efficiency which is possible using these new technologies. However, a lot more research is still needed. This study will unite: (i) the synthesis of new materials, (ii) detailed spectroscopic characterisation (iii) device fabrication and measurements of performance, and (iv) theoretical calculations. The team will study materials whose properties are systematically changed with the aim of enhancing their performance in three areas. Energy transfer within and between molecules is a central theme.(i) More efficient display technologies and new types of lighting. Organic light-emitting devices (OLEDs) use small molecules or polymers which are built up from conjugated rings and pi-electrons to convert electrical energy into visible light. The innovative feature in this project is the use of metal complexes of molecules which emit from a doublet state (i.e. when the metal has one unpaired electron). This is an idea which has not been tested before in OLEDs and, if successful, it could overcome a major limitation of the current technology. Existing devices use molecules with a singlet or triplet state and this limits their efficiency. In particular, our strategy could lead to more efficient blue emitters. This is essential for full-colour displays and for producing white light in lighting applications. New efficient sources of white light are urgently needed as lighting accounts for more than 20% of the UK's energy consumption. (ii) Enhancing Performance of Organic Solar Cells. It is well known that conjugated organic molecules can capture sunlight and convert it into electricity. However, the power conversion efficiency is very low (only about 6%) i.e. 94% of solar radiation does not lead to electric current. We will explore an innovative way of improving this efficiency. When the molecules in a solar cell absorb sunlight, it is crucial to channel this energy between molecules in a precise way to get an efficient output of electricity. A major problem is how to prevent the charged molecular states from recombining (quenching) - a process which does not lead to electricity. We will explore the use of low-energy triplet states to overcome this problem. The advantage of triplet states is that they have longer lifetimes and can therefore move further within the molecules and are less likely to recombine. A new device architecture will be developed that could harness triplets and generate electricity more efficiently.(iii) Reducing atmospheric carbon dioxide. We are all aware of the huge environmental problems of the increasing levels of carbon dioxide in the atmosphere. We propose a new approach to converting carbon dioxide into fuel feedstocks. The principle is this: conjugated polymers absorb light efficiently and then transfer their electrons to nanoparticles or nanotubes. Instead of producing current (as in a solar cell) these charges will be used to convert carbon dioxide into useful fuel molecules, such as methane or ethanol (which could be used instead of oil or coal). Our scheme for achieving this uses organometallic complexes which can capture carbon dioxide on the surface of the nanoparticles.We are in contact with industrial collaborators who will provide input to facilitate future exploitation of promising results.
我们提出了三个冒险的,跨学科的能源研究领域内的项目。在过去的十年里,人们对有机电子领域的兴趣高涨。发光显示器以及化学和物理传感器等设备已经上市--可能就在您的家中和口袋里--而太阳能电池等其他设备正在快速发展。其动机是降低成本,易于制造,大面积的能力和提高效率,这是可能使用这些新技术。然而,仍然需要更多的研究。这项研究将结合:(i)新材料的合成,(ii)详细的光谱表征,(iii)器件制造和性能测量,以及(iv)理论计算。该团队将研究其属性系统地改变的材料,目的是提高其在三个领域的性能。分子内和分子间的能量转移是一个中心主题。(i)更高效的显示技术和新型照明。有机发光器件(OLED)使用由共轭环和π电子构成的小分子或聚合物将电能转化为可见光。该项目的创新特征是使用从双重态(即当金属具有一个未配对电子时)发射的分子的金属络合物。这是一个以前没有在OLED中测试过的想法,如果成功,它可以克服当前技术的主要限制。现有的器件使用具有单重态或三重态的分子,这限制了它们的效率。特别是,我们的策略可能会导致更有效的蓝光发射器。这对于全色显示器和在照明应用中产生白色光至关重要。由于照明占英国能源消耗的20%以上,因此迫切需要新的高效白色光源。(ii)提高有机太阳能电池的性能。众所周知,共轭有机分子可以捕获阳光并将其转化为电能。然而,功率转换效率非常低(仅约6%),即94%的太阳辐射不会产生电流。我们将探索一种创新的方式来提高这一效率。当太阳能电池中的分子吸收阳光时,以精确的方式在分子之间传递这种能量以获得有效的电力输出至关重要。一个主要的问题是如何防止带电的分子状态重新组合(猝灭)-一个不会导致电的过程。我们将探索使用低能三重态来克服这个问题。三重态的优点是它们具有更长的寿命,因此可以在分子内移动得更远,并且不太可能重组。将开发一种新的设备架构,可以利用三胞胎和更有效地发电。(iii)减少大气中的二氧化碳。我们都意识到大气中二氧化碳含量不断增加所带来的巨大环境问题。我们提出了一种将二氧化碳转化为燃料原料的新方法。其原理是:共轭聚合物有效地吸收光,然后将其电子转移到纳米颗粒或纳米管上。而不是产生电流(如在太阳能电池中),这些电荷将用于将二氧化碳转化为有用的燃料分子,如甲烷或乙醇(可以用来代替石油或煤炭)。为了实现这一目标,我们使用了可以在纳米颗粒表面捕获二氧化碳的有机金属配合物。我们正在与工业合作者接触,他们将提供投入,以促进未来有希望的结果的开发。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kinetic Studies of Geminate Polaron Pair Recombination, Dissociation, and Efficient Triplet Exciton Formation in PC:PCBM Organic Photovoltaic Blends
- DOI:10.1021/jp208820g
- 发表时间:2012-02
- 期刊:
- 影响因子:3.7
- 作者:E. Snedden;A. Monkman;F. Dias
- 通讯作者:E. Snedden;A. Monkman;F. Dias
Measurement of interchain and intrachain exciton hopping barriers in luminescent polymer.
发光聚合物中链间和链内激子跳跃势垒的测量。
- DOI:10.1088/0953-8984/24/1/015801
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Santos PL
- 通讯作者:Santos PL
Competition between polaron pair formation and singlet fission observed in amorphous rubrene films
- DOI:10.1103/physrevb.87.224202
- 发表时间:2013-06-04
- 期刊:
- 影响因子:3.7
- 作者:Jankus, Vygintas;Snedden, Edward W.;Monkman, Andrew P.
- 通讯作者:Monkman, Andrew P.
Bimetallic cyclometalated iridium(III) diastereomers with non-innocent bridging ligands for high-efficiency phosphorescent OLEDs.
- DOI:10.1002/anie.201407475
- 发表时间:2014-10
- 期刊:
- 影响因子:0
- 作者:Yonghao Zheng;A. Batsanov;M. A. Fox;H. Al-Attar;K. Abdullah;V. Jankus;M. Bryce;A. Monkman
- 通讯作者:Yonghao Zheng;A. Batsanov;M. A. Fox;H. Al-Attar;K. Abdullah;V. Jankus;M. Bryce;A. Monkman
Photophysics of Charge Generation in Organic Photovoltaic Materials: Kinetic Studies of Geminate and Free Polarons in a Model Donor/Acceptor System
有机光伏材料中电荷产生的光物理学:模型供体/受体系统中双子和自由极化子的动力学研究
- DOI:10.1021/jp206840m
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Snedden E
- 通讯作者:Snedden E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andy Monkman其他文献
Direct observation of protein residue solvation dynamics
直接观察蛋白质残基溶剂化动力学
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
A. K. Shaw;R. Sarkar;D. Banerjee;Susanne Hintschich;Andy Monkman;S. Pal - 通讯作者:
S. Pal
Andy Monkman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andy Monkman', 18)}}的其他基金
TADFsolutions: Addressing the challenges of high-performance solution-processed OLEDs using sustainable materials
TADFsolutions:利用可持续材料应对高性能溶液加工 OLED 的挑战
- 批准号:
EP/X026183/1 - 财政年份:2022
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
rISC - the game of strategic molecular design for high efficiency OLEDs
rISC - 高效率 OLED 战略分子设计游戏
- 批准号:
EP/T02240X/1 - 财政年份:2020
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
Understanding and Design Beyond Born-Oppenheimer using Time-Domain Vibrational Spectroscopy
使用时域振动光谱学理解和设计超越玻恩-奥本海默的理论
- 批准号:
EP/P012167/1 - 财政年份:2017
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
OLEDs without Iridium. 100% efficient triplet harvesting by Thermally Activated Delayed Fluorescence.
OLED%20没有%20铱。%20100%%20效率%20三重态%20收获%20by%20热%20激活%20延迟%20荧光。
- 批准号:
EP/L02621X/1 - 财政年份:2014
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
Enhanced Fluorescent OLEDs, through Triplet Fusion
通过三重态融合增强荧光 OLED
- 批准号:
EP/J015482/1 - 财政年份:2013
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
The Energy Agenda: Exciplex blend small-molecule OLEDs; high performance fluorescent devices from E-type triplet harvesting
能源议程:Exciplex 混合小分子 OLED;
- 批准号:
EP/K016164/1 - 财政年份:2013
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
High triplet energy polymers for blue phosphorescent, solution-processable multilayer PLEDs to develop solid-state lighting
用于蓝色磷光、可溶液加工的多层 PLED 的高三线态能量聚合物,用于开发固态照明
- 批准号:
EP/I013695/1 - 财政年份:2011
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
Solving the NIR dilemma for organic photovoltaics
解决有机光伏发电的近红外难题
- 批准号:
EP/H051902/1 - 财政年份:2010
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
Exciton confinement and stimulated emission from polyfluorene beta-phase; a new direction for polymer lasers.
聚芴β相的激子限制和受激发射;
- 批准号:
EP/E041310/1 - 财政年份:2007
- 资助金额:
$ 25.69万 - 项目类别:
Research Grant
相似海外基金
PIRE: US-Japan Partnership in Excitonic Soft Materials for Clean Energy
PIRE:美日清洁能源激子软材料合作
- 批准号:
2230706 - 财政年份:2023
- 资助金额:
$ 25.69万 - 项目类别:
Standard Grant
Elucidation and control of excitonic potentials in atomic layer materials
原子层材料中激子势的阐明和控制
- 批准号:
23K13043 - 财政年份:2023
- 资助金额:
$ 25.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Topological magnetism realized by excitonic instability
通过激子不稳定性实现拓扑磁性
- 批准号:
23K19027 - 财政年份:2023
- 资助金额:
$ 25.69万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Quantum Monte Carlo methods beyond the fixed-node approximation: excitonic effects and hydrogen compounds
超越固定节点近似的量子蒙特卡罗方法:激子效应和氢化合物
- 批准号:
2316007 - 财政年份:2023
- 资助金额:
$ 25.69万 - 项目类别:
Standard Grant
Excitonic electroabsorption effects in macroscopically aligned carbon nanotubes
宏观排列碳纳米管中的激子电吸收效应
- 批准号:
2321366 - 财政年份:2023
- 资助金额:
$ 25.69万 - 项目类别:
Standard Grant
Excitonic topological states investigated by laser photoemission spectroscopy
激光光电子能谱研究激子拓扑态
- 批准号:
23K13041 - 财政年份:2023
- 资助金额:
$ 25.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Theory of soft and disordered excitonic nano-materials.
软无序激子纳米材料理论。
- 批准号:
RGPIN-2019-04734 - 财政年份:2022
- 资助金额:
$ 25.69万 - 项目类别:
Discovery Grants Program - Individual
Spectroscopic studies of excitonic materials for optoelectronic devices
光电器件用激子材料的光谱研究
- 批准号:
RGPIN-2017-06666 - 财政年份:2022
- 资助金额:
$ 25.69万 - 项目类别:
Discovery Grants Program - Individual
Resonance Raman polarization and high-energy excitonic states in semiconductor nanocrystals
半导体纳米晶体中的共振拉曼偏振和高能激子态
- 批准号:
2203301 - 财政年份:2022
- 资助金额:
$ 25.69万 - 项目类别:
Standard Grant