Advanced Bayesian Computation for Cross-Disciplinary Research
用于跨学科研究的高级贝叶斯计算
基本信息
- 批准号:EP/I036575/1
- 负责人:
- 金额:$ 147.62万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We live in an era of abundant data. Rapid technological advances, such as the internet, have made it possible to collect, store and share large amounts of information more easily than ever before. The availability of large amounts of data has had a major impact on society, commerce, and the sciences.Data plays a particularly important role in the sciences. Data is what you get from conducting experiments, and data is what you use to test scientific theories. In recent years, the amount of data collected and generated in the sciences has grown tremendously. We need better tools to model this data, so that we can understand and test theories and make scientific predictions.Our proposal focuses on advanced statistical tools for modelling data. It is important that the models are based on probability and statistics, because any model of real world phenomena has to represent the uncertainty we have from incomplete information and noisy measurements. Probability theory provides a coherent mathematical language for expressing uncertainty in models. Our proposal develops models based on Bayesian statistics, which used to be called``inverse probability'' until the 20th century, and refers to the application of probability theory to learn unknown quantities from observable data. Bayesian statistics can also be used to compare multiple models (i.e. hypotheses) given the data, and thus can play a fundamental role in scientific hypothesis testing.We will develop new computational tools for Bayesian modelling, ensuring that the models are flexible enough to capture the complexity of real-world phenomena and scalable enough to deal with very large data sets. We will also develop new methods for deciding which data to collect and which experiments to perform, which can greatly reduce the cost of scientific inquiry. We will make use of the latest advances in computer hardware, in the form of massively parallel graphics processing units (GPUs) to speed up modelling of scientific data. This proposal is truly cross-disciplinary in that we do not focus on a single scientific discipline. In fact, we have assembled a team whose expertise spans Bayesian modelling across the physical, biological and social sciences. We will create modelling tools for better astronomical surveying of the skies so that we can understand the composition of our universe;we will create tools for analysing gene and protein data to so that we can better understand biological phenomena and design drug therapies; and we will develop powerful methods for modelling and predicting economic and financial data which will hopefully reduce risk in financial markets. Surprisingly, these diverse areas of the sciences---astronomy, biology and economics---can come together through a unified set of computational and statistical modelling tools. Our advances will benefit not just these areas but many other areas of science based on data-intensive modelling.
我们生活在一个数据丰富的时代。快速的技术进步,如互联网,使得收集、存储和共享大量信息比以往任何时候都更容易。大量数据的可用性对社会、商业和科学产生了重大影响,数据在科学中发挥着特别重要的作用。数据是你从实验中得到的,数据是你用来检验科学理论的东西。近年来,科学领域收集和生成的数据量大幅增长。我们需要更好的工具来模拟这些数据,以便我们能够理解和测试理论并做出科学预测。我们的建议侧重于模拟数据的高级统计工具。重要的是,这些模型是基于概率和统计的,因为任何真实的世界现象的模型都必须代表我们从不完整的信息和噪声测量中获得的不确定性。概率论为表达模型中的不确定性提供了一种连贯的数学语言。我们的建议基于贝叶斯统计开发模型,该模型在世纪之前被称为"逆概率“,并指概率论的应用,以从可观测数据中学习未知量。贝叶斯统计还可以用于比较给定数据的多个模型(即假设),因此可以在科学假设检验中发挥重要作用。我们将开发用于贝叶斯建模的新计算工具,确保模型足够灵活以捕获现实世界现象的复杂性,并具有足够的可扩展性以处理非常大的数据集。我们还将开发新的方法来决定收集哪些数据和进行哪些实验,这可以大大降低科学探究的成本。我们将利用计算机硬件的最新进展,以大规模并行图形处理单元(GPU)的形式来加速科学数据的建模。这个建议是真正的跨学科,因为我们不专注于一个单一的科学学科。事实上,我们已经组建了一个团队,其专业知识涵盖物理,生物和社会科学的贝叶斯建模。我们将创建建模工具,以便更好地对天空进行天文测量,以便我们能够了解宇宙的组成;我们将创建分析基因和蛋白质数据的工具,以便我们能够更好地了解生物现象和设计药物疗法;我们将开发强大的建模和预测经济和金融数据的方法,这将有望降低金融市场的风险。令人惊讶的是,这些不同的科学领域-天文学,生物学和经济学-可以通过一套统一的计算和统计建模工具走到一起。我们的进步不仅将使这些领域受益,还将使许多基于数据密集型建模的其他科学领域受益。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accelerating Bayesian hierarchical clustering of time series data with a randomised algorithm.
- DOI:10.1371/journal.pone.0059795
- 发表时间:2013
- 期刊:
- 影响因子:3.7
- 作者:Darkins R;Cooke EJ;Ghahramani Z;Kirk PD;Wild DL;Savage RS
- 通讯作者:Savage RS
On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes
- DOI:10.17863/cam.15597
- 发表时间:2015-04
- 期刊:
- 影响因子:0
- 作者:A. G. Matthews;J. Hensman;Richard E. Turner;Zoubin Ghahramani
- 通讯作者:A. G. Matthews;J. Hensman;Richard E. Turner;Zoubin Ghahramani
Structure Discovery in Nonparametric Regression through Compositional Kernel Search
- DOI:
- 发表时间:2013-02
- 期刊:
- 影响因子:6.7
- 作者:D. Duvenaud;J. Lloyd;R. Grosse;J. Tenenbaum;Zoubin Ghahramani
- 通讯作者:D. Duvenaud;J. Lloyd;R. Grosse;J. Tenenbaum;Zoubin Ghahramani
Baysesian Lipschitz Constant Estimation and Quadrature
贝叶斯 Lipschitz 常数估计和求积
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Calliess, J-P
- 通讯作者:Calliess, J-P
Scalable Discrete Sampling as a Multi-Armed Bandit Problem
- DOI:
- 发表时间:2015-06
- 期刊:
- 影响因子:0
- 作者:Yutian Chen;Zoubin Ghahramani
- 通讯作者:Yutian Chen;Zoubin Ghahramani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zoubin Ghahramani其他文献
A Tutorial on Gaussian Processes (or why I don't use SVMs)
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Zoubin Ghahramani - 通讯作者:
Zoubin Ghahramani
Probabilistic machine learning and artificial intelligence
概率机器学习与人工智能
- DOI:
10.1038/nature14541 - 发表时间:
2015-05-27 - 期刊:
- 影响因子:48.500
- 作者:
Zoubin Ghahramani - 通讯作者:
Zoubin Ghahramani
Weakly supervised collective feature learning from curated media
从策划媒体中弱监督集体特征学习
- DOI:
10.17863/cam.22832 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yusuke Mukuta;Akisato Kimura;David B. Adrian;Zoubin Ghahramani - 通讯作者:
Zoubin Ghahramani
Sublinear Approximate Inference for Probabilistic Programs
概率程序的次线性近似推理
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yutian Chen;Vikash K. Mansinghka;Zoubin Ghahramani - 通讯作者:
Zoubin Ghahramani
Subsampling-Based Approximate Monte Carlo for Discrete Distributions
离散分布的基于子采样的近似蒙特卡罗
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yutian Chen;Zoubin Ghahramani - 通讯作者:
Zoubin Ghahramani
Zoubin Ghahramani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zoubin Ghahramani', 18)}}的其他基金
Advanced Algorithms for Neural Prosthetic Systems
神经修复系统的先进算法
- 批准号:
EP/H019472/1 - 财政年份:2010
- 资助金额:
$ 147.62万 - 项目类别:
Research Grant
Graphical Models for Relational Data: New Challenges and Solutions
关系数据的图形模型:新挑战和解决方案
- 批准号:
EP/F026641/1 - 财政年份:2008
- 资助金额:
$ 147.62万 - 项目类别:
Research Grant
Managing the Data Explosion in Post-Genomic Biology with Fast Bayesian Computational Methods
使用快速贝叶斯计算方法管理后基因组生物学中的数据爆炸
- 批准号:
EP/F028628/1 - 财政年份:2008
- 资助金额:
$ 147.62万 - 项目类别:
Research Grant
相似国自然基金
多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
- 批准号:82173628
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
- 批准号:42072326
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
- 批准号:51875209
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
- 批准号:U1830105
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
- 批准号:41601345
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
- 批准号:81673274
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
- 批准号:81403276
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
- 批准号:71302080
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
- 批准号:51274089
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Bayesian实物期权及在信用风险决策中的应用
- 批准号:71071027
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
- 批准号:
2412923 - 财政年份:2023
- 资助金额:
$ 147.62万 - 项目类别:
Standard Grant
New algorithms for Bayesian Computation
贝叶斯计算的新算法
- 批准号:
2310788 - 财政年份:2023
- 资助金额:
$ 147.62万 - 项目类别:
Standard Grant
Bayesian Methods, Computation, Model Selection and Goodness of Fit with Complex Data
复杂数据的贝叶斯方法、计算、模型选择和拟合优度
- 批准号:
RGPIN-2018-05008 - 财政年份:2022
- 资助金额:
$ 147.62万 - 项目类别:
Discovery Grants Program - Individual
Harnessing the Power of Stein Discrepancies in Bayesian Computation
利用贝叶斯计算中斯坦因差异的力量
- 批准号:
EP/W019590/1 - 财政年份:2022
- 资助金额:
$ 147.62万 - 项目类别:
Research Grant
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
- 批准号:
2210371 - 财政年份:2022
- 资助金额:
$ 147.62万 - 项目类别:
Standard Grant
Bayesian computation for low-photon imaging
低光子成像的贝叶斯计算
- 批准号:
EP/V006177/1 - 财政年份:2021
- 资助金额:
$ 147.62万 - 项目类别:
Research Grant
Bayesian Methods, Computation, Model Selection and Goodness of Fit with Complex Data
复杂数据的贝叶斯方法、计算、模型选择和拟合优度
- 批准号:
RGPIN-2018-05008 - 财政年份:2021
- 资助金额:
$ 147.62万 - 项目类别:
Discovery Grants Program - Individual
Bayesian computation for low-photon imaging
低光子成像的贝叶斯计算
- 批准号:
EP/V006134/1 - 财政年份:2021
- 资助金额:
$ 147.62万 - 项目类别:
Research Grant
Bayesian inference in survival analysis: new approaches to modelling and computation
生存分析中的贝叶斯推理:建模和计算的新方法
- 批准号:
2576306 - 财政年份:2021
- 资助金额:
$ 147.62万 - 项目类别:
Studentship
RAPID: Flexible, Efficient, and Available Bayesian Computation for Epidemic Models
RAPID:灵活、高效、可用的流行病模型贝叶斯计算
- 批准号:
2055251 - 财政年份:2020
- 资助金额:
$ 147.62万 - 项目类别:
Standard Grant














{{item.name}}会员




