Advanced Algorithms for Neural Prosthetic Systems
神经修复系统的先进算法
基本信息
- 批准号:EP/H019472/1
- 负责人:
- 金额:$ 51.95万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our seemingly effortless ability to make coordinated movements belies the sophisticated computational machinery at work in our nervous system. In recent years, the field of neuroscience has been dramatically expanding the complexity of its data acquisition technologies and experiments. This technological development has created a preponderance of valuable experimental data, but the analytical methods required to deeply interrogate this data have not yet been developed. Simultaneously, the last decade has seen major advances in the fields of computational statistics, data analysis techniques, and machine learning. Research in these areas has enabled investigation into and understanding of previously uninterpretable data.This proposal seeks to bring together key research from these two fields to significantly advance the scientifically and medically important application of neural prosthetic systems, which seeks to improve greatly the quality of life of hundreds of thousands of severely disabled human patients worldwide. Debilitating diseases like Amyotrophic Lateral Sclerosis can leave a human without voluntary motor control. However, in most cases, the brain itself remains intact and has normal function. The same is true with spinal cord injuries that result in severe paralysis. In fact, tetrapalegic patients list ``regaining arm/hand control'' as the top priority for improving their quality of life, as regaining this function would allow significant patient independence. To address this priority, neural prosthetic systems seek to access the information in the brain and use that information to control a prosthetic device such as a robotic arm or a computer cursor. There are many medical, scientific, and engineering challenges in developing such a system, but all neural prosthetic systems share in common a decoding algorithm. Decoding algorithms map neural activity into physical commands such as parameters for controlling a robotic arm. Current decoding approaches have shown exciting proofs of concept, but there are a number of shortcomings that must be addressed before the field produces a clinically viable prosthetic device with speed and accuracy comparable to a healthy human arm. Our research programme will use advanced statistical and machine learning technologies to create algorithms that can decode neural activity with higher precision that previously seen. We have identified several opportunities for meaningful improvement, from incorporating the statistics of natural reaching to validating these algorithms in a realistic online setting. Taken together, these algorithmic developments should help create a much higher quality neural prosthetic device.
我们看似毫不费力地进行协调运动的能力掩盖了我们神经系统中复杂的计算机制的运作。近年来,神经科学领域的数据采集技术和实验的复杂性急剧扩大。这项技术的发展创造了大量有价值的实验数据,但深入研究这些数据所需的分析方法尚未开发出来。同时,过去十年在计算统计、数据分析技术和机器学习领域取得了重大进展。这些领域的研究使人们能够调查和理解以前无法解释的数据。该提案旨在汇集这两个领域的关键研究,以显着推进神经假体系统在科学和医学上的重要应用,从而大大提高全世界数十万严重残疾人类患者的生活质量。肌萎缩侧索硬化症等使人衰弱的疾病会使人失去自主运动控制能力。然而,在大多数情况下,大脑本身保持完整并具有正常功能。导致严重瘫痪的脊髓损伤也是如此。事实上,四肢瘫痪患者将“恢复手臂/手的控制”列为改善生活质量的首要任务,因为恢复这种功能将使患者能够显着独立。为了解决这个问题,神经假肢系统试图访问大脑中的信息,并使用该信息来控制假肢设备,例如机械臂或计算机光标。开发这样的系统面临许多医学、科学和工程挑战,但所有神经修复系统都有一个共同的解码算法。解码算法将神经活动映射为物理命令,例如用于控制机械臂的参数。目前的解码方法已经显示出令人兴奋的概念证明,但在现场生产出速度和精度可与健康人臂相媲美的临床上可行的假肢装置之前,必须解决许多缺点。我们的研究计划将使用先进的统计和机器学习技术来创建能够以比以前更高的精度解码神经活动的算法。我们已经确定了一些有意义的改进机会,从合并自然到达的统计数据到在现实的在线环境中验证这些算法。总而言之,这些算法的发展应该有助于创建更高质量的神经假肢设备。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linear Dimensionality Reduction: Survey, Insights, and Generalizations
线性降维:调查、见解和概括
- DOI:10.48550/arxiv.1406.0873
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Cunningham John P.
- 通讯作者:Cunningham John P.
Gaussian Processes for time-marked time-series data
- DOI:
- 发表时间:2012-03
- 期刊:
- 影响因子:0
- 作者:J. Cunningham;Zoubin Ghahramani;C. Rasmussen
- 通讯作者:J. Cunningham;Zoubin Ghahramani;C. Rasmussen
Scaling multidimensional Gaussian Processes using projective additive approximations
使用投影加法近似缩放多维高斯过程
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Elad Gilboa (Author)
- 通讯作者:Elad Gilboa (Author)
Cortical preparatory activity: representation of movement or first cog in a dynamical machine?
- DOI:10.1016/j.neuron.2010.09.015
- 发表时间:2010-11-04
- 期刊:
- 影响因子:16.2
- 作者:Churchland, Mark M.;Cunningham, John P.;Kaufman, Matthew T.;Ryu, Stephen I.;Shenoy, Krishna V.
- 通讯作者:Shenoy, Krishna V.
Neural population dynamics during reaching.
- DOI:10.1038/nature11129
- 发表时间:2012-07-05
- 期刊:
- 影响因子:64.8
- 作者:Churchland, Mark M.;Cunningham, John P.;Kaufman, Matthew T.;Foster, Justin D.;Nuyujukian, Paul;Ryu, Stephen I.;Shenoy, Krishna V.
- 通讯作者:Shenoy, Krishna V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zoubin Ghahramani其他文献
A Tutorial on Gaussian Processes (or why I don't use SVMs)
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Zoubin Ghahramani - 通讯作者:
Zoubin Ghahramani
Probabilistic machine learning and artificial intelligence
概率机器学习与人工智能
- DOI:
10.1038/nature14541 - 发表时间:
2015-05-27 - 期刊:
- 影响因子:48.500
- 作者:
Zoubin Ghahramani - 通讯作者:
Zoubin Ghahramani
Subsampling-Based Approximate Monte Carlo for Discrete Distributions
离散分布的基于子采样的近似蒙特卡罗
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yutian Chen;Zoubin Ghahramani - 通讯作者:
Zoubin Ghahramani
Sublinear Approximate Inference for Probabilistic Programs
概率程序的次线性近似推理
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yutian Chen;Vikash K. Mansinghka;Zoubin Ghahramani - 通讯作者:
Zoubin Ghahramani
Weakly supervised collective feature learning from curated media
从策划媒体中弱监督集体特征学习
- DOI:
10.17863/cam.22832 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yusuke Mukuta;Akisato Kimura;David B. Adrian;Zoubin Ghahramani - 通讯作者:
Zoubin Ghahramani
Zoubin Ghahramani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zoubin Ghahramani', 18)}}的其他基金
Advanced Bayesian Computation for Cross-Disciplinary Research
用于跨学科研究的高级贝叶斯计算
- 批准号:
EP/I036575/1 - 财政年份:2011
- 资助金额:
$ 51.95万 - 项目类别:
Research Grant
Graphical Models for Relational Data: New Challenges and Solutions
关系数据的图形模型:新挑战和解决方案
- 批准号:
EP/F026641/1 - 财政年份:2008
- 资助金额:
$ 51.95万 - 项目类别:
Research Grant
Managing the Data Explosion in Post-Genomic Biology with Fast Bayesian Computational Methods
使用快速贝叶斯计算方法管理后基因组生物学中的数据爆炸
- 批准号:
EP/F028628/1 - 财政年份:2008
- 资助金额:
$ 51.95万 - 项目类别:
Research Grant
相似海外基金
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 51.95万 - 项目类别:
Standard Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 51.95万 - 项目类别:
Research Grant
I-Corps: Using neural radiance fields (NeRF) and photogrammetry algorithms for creating 3D models
I-Corps:使用神经辐射场 (NeRF) 和摄影测量算法创建 3D 模型
- 批准号:
2412147 - 财政年份:2024
- 资助金额:
$ 51.95万 - 项目类别:
Standard Grant
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
- 批准号:
2340516 - 财政年份:2024
- 资助金额:
$ 51.95万 - 项目类别:
Continuing Grant
ATD:Understanding Adversarial Examples in Neural Network: Theory and Algorithms
ATD:理解神经网络中的对抗性例子:理论和算法
- 批准号:
2318926 - 财政年份:2023
- 资助金额:
$ 51.95万 - 项目类别:
Standard Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
- 批准号:
2239977 - 财政年份:2023
- 资助金额:
$ 51.95万 - 项目类别:
Continuing Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 51.95万 - 项目类别:
Standard Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
2311500 - 财政年份:2023
- 资助金额:
$ 51.95万 - 项目类别:
Standard Grant
Combining real-time airborne bioaerosol spectrometry with neural network algorithms to quantify different bioaerosol emissions from agriculture.
将实时空气生物气溶胶光谱测定与神经网络算法相结合,量化农业中不同的生物气溶胶排放。
- 批准号:
2878964 - 财政年份:2023
- 资助金额:
$ 51.95万 - 项目类别:
Studentship
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 51.95万 - 项目类别:
Standard Grant














{{item.name}}会员




