Physical, algebraic and geometric underpinnings of topological quantum computation

拓扑量子计算的物理、代数和几何基础

基本信息

  • 批准号:
    EP/I038683/1
  • 负责人:
  • 金额:
    $ 102.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Conventional computer architecture is designed using an essentially classical physical model of the relationship between components and code (hardware and software), in which each `bit' holds a fixed value 0 or 1 until it is changed. Conventional components are large enough that this model is a good approximation to reality. On the other hand, for very small `components' we know that this is _not_ a good approximation. We know from experiment that they behave differently from the classical way (that our experience of the macroscopic world trains us to think about things). This difference can manifest itself as Heisenberg uncertainty, which is not something desirable in a computation. However it can also be thought of, loosely, as taking many values at once, like a hugely fast or massively parallel computer. If this aspect can be harnessed, the disadvantageous `quantum' phenomenon becomes advantageous --- perhaps revolutionarily so. In recent years computer scientists have shown in principle that the parallelism _can_ be harnessed for certain kinds of computation. The next challenge is to design (then build) a quantum computer.However, partly because the quantum model is not intuitive, the best design language is mathematics --- a language built on far fewer `dangerous' assumptions than conventional engineering design. And the good news is (i) that an encouraging basis of usable mathematics is being developed; and (ii) that this challenge is taking the mathematics in intrinsically interesting directions. Leeds University hosts a leading centre for research in quantum information, and also hosts research into some of the main types of mathematics that turn out to be needed: applied representation theory and integrable systems. This project uses expertise in linear category theory, quantum geometry, and related areas of representation theory and integrable systems to provide radically new models of quantum computation. The project interfaces this expertise with expertise on topological phases of matter, and expertise on practitioner constraints, in order to implement the models, ready for laboratory testing. An intriguing way to reinvent the error-robustness of classical digital computing is to work with topological characteristics of the `computer components' --- that is, characteristics that are invariant under small local distortions of the system (which are typically the main kind of error inducing `noise' present). This proposal is concerned, therefore, with the investigation of _topological_ systems that can support quantum information tasks, such as quantum memory, quantum computation and quantum cryptography. The goal is to propose small scale _topological_ models, amenable to laboratory simulations which would then test their feasibility as models for quantum computation. The physics behind the models may be described in terms of `anyon' particles which can be experimentally realized in topological insulators and in graphene carbon, and which can encode and manipulate quantum information error-robustly. The objective here is to develop the theoretical underpinnings of this technology by means of the relation to certain algebraic structures (realized by a topological diagram calculus) and corresponding problems in low-dimensional topology and representation theory. In particular, while guided firmly by the requirements of physical realizability, the project endeavours to deepen the understanding of numerically and analytically solvable models arising from theoretical constructs such as generalized Temperley-Lieb diagram categories, as well as novel models of quantum geometry developed through the theory of exactly integrable quantum systems.
传统的计算机体系结构是使用组件和代码(硬件和软件)之间关系的基本上经典的物理模型设计的,其中每个“位”保持固定值0或1,直到它被改变。传统的组件足够大,这个模型是一个很好的近似现实。另一方面,对于非常小的"组件",我们知道这不是一个很好的近似。我们从实验中知道,它们的行为与经典方式不同(我们对宏观世界的经验训练我们思考事物)。这种差异可以表现为海森堡不确定性,这在计算中是不可取的。然而,它也可以被认为是,松散地,作为一次采取许多值,就像一个非常快或大规模并行计算机。如果能利用这一点,不利的“量子”现象就会变得有利--也许是革命性的。近年来,计算机科学家已经在原则上证明了并行性可以用于某些类型的计算。下一个挑战是设计(然后建造)一台量子计算机,然而,部分原因是量子模型不是直观的,最好的设计语言是数学-一种建立在比传统工程设计少得多的"危险"假设上的语言。好消息是(i)一个令人鼓舞的可用数学基础正在发展;(ii)这个挑战正在把数学带到本质上有趣的方向。利兹大学拥有一个领先的量子信息研究中心,并主持了对一些主要数学类型的研究,这些数学类型被证明是必要的:应用表示论和可积系统。该项目使用线性范畴理论,量子几何,表示论和可积系统的相关领域的专业知识,提供量子计算的全新模型。该项目将这一专业知识与物质拓扑阶段的专业知识和从业人员限制的专业知识相结合,以便实施模型,为实验室测试做好准备。一个有趣的方法来重塑经典的数字计算的错误鲁棒性是工作与拓扑特征的“计算机组件”-也就是说,特征是不变的小局部失真的系统(这是典型的主要类型的错误诱导“噪音”目前)。因此,该建议关注的是研究能够支持量子信息任务的拓扑系统,如量子存储,量子计算和量子密码学。我们的目标是提出小尺度拓扑模型,服从实验室模拟,然后将测试其作为量子计算模型的可行性。模型背后的物理学可以用“任意子”粒子来描述,这些粒子可以在拓扑绝缘体和石墨烯碳中实验实现,并且可以编码和操纵量子信息。这里的目标是通过与某些代数结构(由拓扑图演算实现)的关系以及低维拓扑和表示论中的相应问题来发展这种技术的理论基础。特别是,在严格遵循物理可实现性要求的同时,该项目致力于加深对从理论结构(如广义Temperley-Lieb图类别)中产生的数值和解析可解模型的理解,以及通过精确可积量子系统理论开发的量子几何新模型。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A generalised Euler-Poincaré formula for associahedra
关联面体的广义欧拉-庞加莱公式
  • DOI:
    10.48550/arxiv.1711.04986
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baur Karin
  • 通讯作者:
    Baur Karin
Tonal partition algebras: fundamental and geometrical aspects of representation theory
  • DOI:
    10.1080/00927872.2023.2239357
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    C. Ahmed;Paul Martin;V. Mazorchuk
  • 通讯作者:
    C. Ahmed;Paul Martin;V. Mazorchuk
On the number of principal ideals in d-tonal partition monoids
关于 d 调分区幺半群中主理想的数量
  • DOI:
    10.1007/s00026-020-00518-z
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Ahmed C
  • 通讯作者:
    Ahmed C
Closed-form modified Hamiltonians for integrable numerical integration schemes
  • DOI:
    10.1088/1361-6544/aad9ac
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Shami A. M. Alsallami;Jitse Niesen;F. Nijhoff
  • 通讯作者:
    Shami A. M. Alsallami;Jitse Niesen;F. Nijhoff
Winding number order in the Haldane model with interactions
Haldane 模型中相互作用的绕数顺序
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alba Emilio
  • 通讯作者:
    Alba Emilio
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Martin其他文献

Martin, Paul (2013) Embodiment in skateboarding videogames. International Journal of Performance Arts and Digital Media, 9 (2). pp. 315-327
Martin, Paul (2013) 滑板电子游戏的体现。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Martin
  • 通讯作者:
    Paul Martin
The influence of health concerns in scientific and policy debates on climate change
健康问题对气候变化科学和政策辩论的影响
Classification of spin-chain braid representations
自旋链编织表示法的分类
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Martin;E. Rowell
  • 通讯作者:
    E. Rowell
On a canonical lift of Artin's representation to loop braid groups
论阿廷对循环辫子组表示的规范提升
  • DOI:
    10.1016/j.jpaa.2021.106760
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Damiani;João F. Martins;Paul Martin
  • 通讯作者:
    Paul Martin
The Association of Electrocardiographic Abnormalities and Acute Coronary Syndrome in Emergency Patients With Chest Pain
急诊胸痛患者心电图异常与急性冠状动脉综合征的关系
  • DOI:
    10.1111/acem.13123
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    T. Knowlman;J. Greenslade;W. Parsonage;T. Hawkins;L. Ruane;Paul Martin;S. Prasad;D. Lancini;L. Cullen
  • 通讯作者:
    L. Cullen

Paul Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Martin', 18)}}的其他基金

Investigating circadian regulation of wound repair in vivo and in vitro
研究体内和体外伤口修复的昼夜节律调节
  • 批准号:
    BB/W018594/1
  • 财政年份:
    2022
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Research Grant
Screening for, and characterisation of, novel immune cell extravasation genes in Drosophila, mice and man
果蝇、小鼠和人中新型免疫细胞外渗基因的筛选和表征
  • 批准号:
    MR/V011294/1
  • 财政年份:
    2021
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Research Grant
Statistical modelling of in vivo immune response dynamics in zebrafish to multiple stimuli
斑马鱼对多种刺激的体内免疫反应动态的统计模型
  • 批准号:
    BB/K018027/1
  • 财政年份:
    2013
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Research Grant
SBIR Phase I: Sensor for Hazardous Static Voltage
SBIR 第一阶段:危险静态电压传感器
  • 批准号:
    1314673
  • 财政年份:
    2013
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Standard Grant
Modeling of wound repair and inflammation in the Drosophila embryo
果蝇胚胎伤口修复和炎症的建模
  • 批准号:
    MR/J002577/1
  • 财政年份:
    2012
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Research Grant
Investigating the functions and therapeutic potential for Eph receptors and ephrins during wound repair and inflammation
研究 Eph 受体和肝配蛋白在伤口修复和炎症过程中的功能和治疗潜力
  • 批准号:
    G0901822/1
  • 财政年份:
    2010
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Research Grant
SBIR Phase I: Electrochromic Nano-Pigment Dispersion
SBIR 第一阶段:电致变色纳米颜料分散体
  • 批准号:
    1012441
  • 财政年份:
    2010
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Standard Grant
Workshop: Themes at the interface of Physics and Algebraic Representation Theory
研讨会:物理与代数表示论界面的主题
  • 批准号:
    EP/E021328/1
  • 财政年份:
    2006
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Research Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Numerical Methods in Forward and Inverse Electromagnetic Scattering" - June 3-7, 2002
NSF/CBMS 数学科学区域会议 - “正向和逆向电磁散射的数值方法” - 2002 年 6 月 3-7 日
  • 批准号:
    0121301
  • 财政年份:
    2001
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Standard Grant
Movements of Desert Plants in the Holocene: (Environmental Biology)
全新世沙漠植物的运动:(环境生物学)
  • 批准号:
    8214939
  • 财政年份:
    1983
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Standard Grant

相似国自然基金

Lienard系统的不变代数曲线、可积性与极限环问题研究
  • 批准号:
    12301200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
对RS和AG码新型软判决代数译码的研究
  • 批准号:
    61671486
  • 批准年份:
    2016
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
  • 批准号:
    22K13904
  • 财政年份:
    2023
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The geometric and algebraic properties of 4-manifolds
4-流形的几何和代数性质
  • 批准号:
    2891032
  • 财政年份:
    2023
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Studentship
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
  • 批准号:
    23K17298
  • 财政年份:
    2023
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
LEAPS-MPS: Combinatorics from an Algebraic and Geometric Lens
LEAPS-MPS:代数和几何透镜的组合学
  • 批准号:
    2211379
  • 财政年份:
    2022
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Standard Grant
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
  • 批准号:
    RGPIN-2019-05607
  • 财政年份:
    2022
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
  • 批准号:
    RGPIN-2018-03880
  • 财政年份:
    2022
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
  • 批准号:
    RGPIN-2018-04615
  • 财政年份:
    2022
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
  • 批准号:
    DDG-2022-00024
  • 财政年份:
    2022
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Discovery Development Grant
Questions in Algebraic and Geometric Combinatorics
代数和几何组合问题
  • 批准号:
    2153897
  • 财政年份:
    2022
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Standard Grant
RTG: Algebraic and Geometric Topology at Michigan State
RTG:密歇根州立大学的代数和几何拓扑
  • 批准号:
    2135960
  • 财政年份:
    2022
  • 资助金额:
    $ 102.37万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了