The Mathematics of Liquid Crystals - Analysis, Computation and Applications

液晶数学 - 分析、计算和应用

基本信息

  • 批准号:
    EP/J001686/2
  • 负责人:
  • 金额:
    $ 55.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Liquid crystals (LC) are mesophases or phases of matter with physical properties intermediate between those of conventional solids and conventional liquids. LCs are ubiquitous in modern life and have widespread applications in science and industry e.g. multimedia technology, optical imaging and bio-medicine. The largest LC application area is display technology, with liquid crystal displays (LCDs) occupying almost 90% of the current flat-panel display market. LCDs are preferred whenever compactness, portability and low power consumption are a priority. The performance of a LCD is controlled by an intricate combination of a variety of factors - external influences, optical properties, response to electric and magnetic fields, elastic effects and defects. Of key importance is the underlying microscopic structure that is often poorly understood. In fact, systematic mechanisms for transferring information between microscopic and macroscopic scales is recognized to be a major challenge for modern LC science.The interaction between mathematics and LC science is twofold. On the one hand, mathematics can give fundamental insight into liquid crystal phenomena which, in turn, is crucial for controlling, predicting and even engineering LC properties. On the other hand, the mathematical modelling of LCs and LCDs leads to novel cutting-edge problems in diverse branches of mathematics e.g. theory of partial differential equations, topology, algebraic geometry, multiscale theory and inverse problems. My research programme aims to (a) to address key mathematical questions in the foundational aspects of LC science complimented by novel numerical algorithms, (b) to develop a cross-disciplinary approach to LC science and (c) integrate theory with industrial LC applications. These problems are of fundamental scientific interest and have immediate relevance to a promising class of high-resolution low power consumption displays known as bistable LCDs. Bistable LCDs are distinctive in the sense that they require power only to switch between optically contrasting states but not to support these states individually e.g. Zenithally Bistable Nematic Device and Post Aligned Bistable Nematic Device.There are a hierarchy of mathematical theories for LCs, ranging from the most detailed atomistic theories to the least detailed macroscopic (continuum) theories. Most of the mathematical work in the field has focused on macroscopic theoretical approaches but a number of open questions remain. In my research programme, I will first develop an arsenal of mathematical tools in the macroscopic theoretical framework. The problems of interest include (i) some key questions related to the effect of geometry and material characteristics on bistability and optical properties and (ii) a rigorous mathematical theory for defects in LCs. Defects are regions of local imperfections in a material and liquid crystal samples are typically populated by such defects. Defects play a crucial role in physical phenomena and yet, they are poorly understood. The second step will be to develop new multiscale methodologies that can couple microscopic and macroscopic models together. The proposed multiscale theories will be analytically tractable, computationally efficient and will capture the microscopic origins of macroscopic behaviour. Such methodologies will also have applications to polymer simulations, membrane modelling and modelling of peptides and proteins. These theoretical and numerical tools will constitute a sound theoretical foundation for bistable LCDs. Industrial researchers are interested in understanding the effect of geometry and material properties on (a) the structure and optical properties of physically observable states and (b) the switching characteristics of the bistable devices. These questions will be answered in active collaboration with industry, with a view to optimize modern LCDs and design new devices tailored to specific applications.
液晶是物理性质介于传统固体和传统液体之间的中间相或物质相。液晶在现代生活中无处不在,在多媒体技术、光学成像、生物医学等科学和工业领域有着广泛的应用。最大的液晶应用领域是显示技术,液晶显示器(LCD)占据了目前平板显示器市场的近90%。只要紧凑性、便携性和低功耗是优先考虑的,LCD就会成为首选。LCD的性能受多种因素的复杂组合控制--外部影响、光学特性、对电场和磁场的响应、弹性效应和缺陷。最重要的是潜在的微观结构,而人们往往对此知之甚少。事实上,微观和宏观尺度之间传递信息的系统机制被认为是现代LC科学的主要挑战。数学和LC科学之间的互动是双重的。一方面,数学可以给出液晶现象的基本见解,而液晶现象反过来又对控制、预测甚至工程设计液晶性能至关重要。另一方面,LCD和LCD的数学建模在不同的数学分支中产生了新的前沿问题,如偏微分方程组理论、拓扑学、代数几何、多尺度理论和反问题。我的研究计划旨在(A)解决LC科学基础方面的关键数学问题,并辅之以新的数值算法,(B)开发LC科学的跨学科方法,以及(C)将理论与工业LC应用相结合。这些问题具有根本的科学意义,并与一类被称为双稳态LCD的有前途的高分辨率低功耗显示器直接相关。双稳LCD的独特之处在于,它们只需要能量来在光学对比态之间切换,而不需要单独支持这些状态,例如天顶双稳向列型器件和后对准双稳向列型器件。对于LCD,有一系列的数学理论,从最详细的原子理论到最不详细的宏观(连续)理论。该领域的大多数数学工作都集中在宏观理论方法上,但仍有一些悬而未决的问题。在我的研究计划中,我将首先在宏观理论框架中开发一批数学工具。感兴趣的问题包括(I)一些与几何和材料特性对双稳态和光学性质的影响有关的关键问题和(Ii)关于液晶显示系统中缺陷的严格的数学理论。缺陷是材料中局部缺陷的区域,液晶样品通常由这样的缺陷填充。缺陷在物理现象中扮演着至关重要的角色,然而,人们对它们知之甚少。第二步将是开发新的多尺度方法,将微观模型和宏观模型结合在一起。拟议的多尺度理论将在分析上易于处理,计算上高效,并将捕捉宏观行为的微观起源。这些方法还将应用于聚合物模拟、膜模拟以及多肽和蛋白质的模拟。这些理论和数值工具将构成双稳态LCD的良好理论基础。工业研究人员感兴趣的是了解几何和材料性质对(A)物理可观察状态的结构和光学性质以及(B)双稳器件的开关特性的影响。这些问题将在与业界的积极合作中得到回答,以期优化现代LCD并设计适合特定应用的新设备。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global existence and regularity of solutions for active liquid crystals
  • DOI:
    10.1016/j.jde.2017.02.035
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Gui-Qiang G. Chen;A. Majumdar;Dehua Wang;Rongfang Zhang
  • 通讯作者:
    Gui-Qiang G. Chen;A. Majumdar;Dehua Wang;Rongfang Zhang
Global Weak Solutions for the Compressible Active Liquid Crystal System
  • DOI:
    10.1137/17m1156897
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gui-Qiang G. Chen;A. Majumdar;Dehua Wang;Rongfang Zhang
  • 通讯作者:
    Gui-Qiang G. Chen;A. Majumdar;Dehua Wang;Rongfang Zhang
Radial symmetry on three-dimensional shells in the Landau-de Gennes theory
  • DOI:
    10.1016/j.physd.2015.09.013
  • 发表时间:
    2014-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Majumdar;Giacomo Canevari;M. Ramaswamy
  • 通讯作者:
    A. Majumdar;Giacomo Canevari;M. Ramaswamy
Magnetic nanoparticles in a nematic channel: A one-dimensional study.
向列通道中的磁性纳米粒子:一维研究。
  • DOI:
    10.1103/physreve.100.012703
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bisht K
  • 通讯作者:
    Bisht K
The Well Order Reconstruction Solution for three-dimensional wells, in the Landau-de Gennes theory
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Apala Majumdar其他文献

The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals
Landau–de Gennes 向列液晶理论中的径向刺猬解

Apala Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Apala Majumdar', 18)}}的其他基金

The Mathematics of Liquid Crystals - Analysis, Computation and Applications
液晶数学 - 分析、计算和应用
  • 批准号:
    EP/J001686/1
  • 财政年份:
    2011
  • 资助金额:
    $ 55.79万
  • 项目类别:
    Fellowship

相似国自然基金

研究和探索一维范德华材料中的Luttinger liquid物理和摩尔超晶格物理
  • 批准号:
    12174335
  • 批准年份:
    2021
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 55.79万
  • 项目类别:
    Standard Grant
Lubrication by Lamellar Liquid Crystals - An in-situ investigation of thin films with Brewster Angle microscopy technology
层状液晶润滑 - 使用布鲁斯特角显微镜技术对薄膜进行原位研究
  • 批准号:
    EP/Y023277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.79万
  • 项目类别:
    Research Grant
Hierarchically Ordered Structures by Frustration Design of Liquid Crystals and Its Functional Exploration
液晶的分层有序结构及其功能探索
  • 批准号:
    23H02038
  • 财政年份:
    2023
  • 资助金额:
    $ 55.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conference: 2023 Liquid Crystals GRC and GRS: Learning from Nature to Transform Technology through Liquid Crystal Science
会议:2023 液晶 GRC 和 GRS:向自然学习,通过液晶科学转变技术
  • 批准号:
    2318184
  • 财政年份:
    2023
  • 资助金额:
    $ 55.79万
  • 项目类别:
    Standard Grant
Prediction of Phase Transition Behavior by Machine Learning to Interpret Molecular Arrangement and Application to Photofunctional Liquid Crystals
通过机器学习预测相变行为以解释分子排列及其在光功能液晶中的应用
  • 批准号:
    22KJ1964
  • 财政年份:
    2023
  • 资助金额:
    $ 55.79万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Flow-Induced Structures in Lyotropic Chromonic Liquid Crystals
溶致发色液晶中的流动诱导结构
  • 批准号:
    2245163
  • 财政年份:
    2023
  • 资助金额:
    $ 55.79万
  • 项目类别:
    Standard Grant
Active control of phase transition temperature of liquid crystals by light-stimulative deformation of phase-separated structure of polymers
通过光促聚合物相分离结构变形主动控制液晶相变温度
  • 批准号:
    23K03352
  • 财政年份:
    2023
  • 资助金额:
    $ 55.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
2023 Liquid Crystals Gordon Research Conference & Gordon Research Seminar
2023年液晶戈登研究会议
  • 批准号:
    10683604
  • 财政年份:
    2023
  • 资助金额:
    $ 55.79万
  • 项目类别:
CAREER: Chiral active nematic liquid crystals
职业:手性活性向列液晶
  • 批准号:
    2239551
  • 财政年份:
    2023
  • 资助金额:
    $ 55.79万
  • 项目类别:
    Continuing Grant
Mathematical Problems Modeling Nematic Liquid Crystals: from Macroscopic to Microscopic Theories
向列液晶建模的数学问题:从宏观到微观理论
  • 批准号:
    2307525
  • 财政年份:
    2023
  • 资助金额:
    $ 55.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了