Achieving high power heat-recovery systems using molecularly-complex fluids
使用分子复合流体实现高功率热回收系统
基本信息
- 批准号:EP/J006394/1
- 负责人:
- 金额:$ 12.74万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Achieving UK and EU emissions targets requires a transformation in the power generation and manufacturing industries. In the UK we consume 350TWhr of electricity every year, but with modern power-stations which are typically around 50% efficient a large proportion of energy is wasted as rejected heat. Recovering just 10% of this heat would save the equivalent power output of 22 power stations. This is not to mention the heat which could be recovered from manufacturing industries where large quantities of energy are wasted through the heating and cooling during metal-forming processes. In order to make heat-recovery economically viable, low-temperature Organic Rankine Cycles (ORC) can be deployed using fluids with boiling-points close to ambient temperatures, such as many 'molecularly-complex' fluids. The power is extracted in an ORC across a turbine, where these 'molecularly-complex' fluids exist in a gaseous state, and pass through the turbine at high speeds. Increasing the power extracted from the turbine makes heat-recovery systems much more economically favourable and can be achieved by raising the pressure ratio across the turbine. In order to do this efficiently requires a better understanding of molecular-complex gas flows because there is very little known about these complex flows in turbines. The lack of an in-depth understanding of the molecular complex gas-dynamics in ORC turbines means that it is unlikely that optimum power levels are being achieved with present-day design methods.Therefore this proposal aims to determine methods of significantly increasing heat-recovery system power outputs by exploiting the effects of molecular complexity in Organic Rankine Cycle turbines. A target is set of doubling current turbine power levels. In order to determine methodologies to achieve this, a combination of experimental and computational tests are planned. Experiments of molecularly complex gas flows will be studied using a specially designed experimental test-rig which will be able to mimic the flow conditions found in the ORC turbine. The computational simulations will involve the use of a research flow-solver, which will be modified to account for molecular-complex gas properties. The experimental data will aid the development of an accurate computational model, which will then be used to determine novel turbine blade designs to operate at high pressure ratios.This research will directly benefit both the fluid-mechanics research community and the power-generation industry. The research will improve our fundamental understanding of the fluid mechanics of molecularly complex fluids, and will also aid the development of sustainable power generation technologies. An improved understanding of molecular-complex gas flows in turbines has the potential to substantially reduce the UK's fossil fuel dependence and improve our ability to recover currently otherwise 'wasted' heat from power stations and manufacturing processes as well as solar and geothermal radiation. This has a large societal benefit both in-terms of aiding the fight against climate-change and improving the UK's energy security. This work will help towards meeting the targets of the UK Climate Change Act 2008 to reduce by 34 percent our greenhouse gas emissions by 2020 and 80 percent by 2050, against the 1990 baseline.
实现英国和欧盟的排放目标需要发电和制造业的转型。在英国,我们每年消耗350 TWhr的电力,但现代发电站的效率通常在50%左右,很大一部分能源被浪费为废热。仅回收10%的热量就可以节省相当于22个发电站的发电量。更不用说可以从制造业回收的热量了,在制造业中,金属成形过程中的加热和冷却浪费了大量的能量。为了使热回收在经济上可行,低温有机朗肯循环(ORC)可以使用沸点接近环境温度的流体,如许多“分子复杂”流体。在ORC中,通过涡轮机提取动力,其中这些“分子复合物”流体以气态存在,并以高速通过涡轮机。增加从涡轮机提取的功率使得热回收系统在经济上更加有利,并且可以通过提高穿过涡轮机的压力比来实现。为了有效地做到这一点,需要更好地了解分子复杂的气体流动,因为对涡轮机中的这些复杂流动知之甚少。由于对有机朗肯循环涡轮机中分子复杂气体动力学缺乏深入的了解,这意味着采用目前的设计方法不太可能实现最佳功率水平。因此,本提案旨在确定通过利用有机朗肯循环涡轮机中分子复杂性的影响来显著增加热回收系统功率输出的方法。目标设定为使当前涡轮机功率水平加倍。为了确定实现这一目标的方法,计划将实验和计算测试相结合。将使用专门设计的实验试验台对分子复杂气流的实验进行研究,该试验台能够模拟ORC涡轮机中的流动条件。计算模拟将涉及使用一个研究流动求解器,这将被修改,以考虑分子复杂的气体性质。实验数据将有助于开发一个精确的计算模型,然后将用于确定新的涡轮机叶片设计,以在高压比下运行。这项研究将直接有利于流体力学研究团体和发电行业。这项研究将提高我们对分子复杂流体的流体力学的基本理解,也将有助于可持续发电技术的发展。对涡轮机中分子复杂气体流动的更好理解有可能大大减少英国对化石燃料的依赖,并提高我们从发电站和制造过程以及太阳能和地热辐射中回收目前“浪费”的热量的能力。这在帮助应对气候变化和改善英国能源安全方面都有很大的社会效益。这项工作将有助于实现英国2008年气候变化法案的目标,即到2020年将我们的温室气体排放量减少34%,到2050年减少80%,与1990年的基线相比。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines
- DOI:10.1115/gt2015-42920
- 发表时间:2015-06
- 期刊:
- 影响因子:0
- 作者:F. Galiana;Andrew P. S. Wheeler;J. Ong
- 通讯作者:F. Galiana;Andrew P. S. Wheeler;J. Ong
The Role of Dense Gas Dynamics on Organic Rankine Cycle Turbine Performance
- DOI:10.1115/1.4024963
- 发表时间:2013-10
- 期刊:
- 影响因子:1.5
- 作者:Andrew P. S. Wheeler;J. Ong
- 通讯作者:Andrew P. S. Wheeler;J. Ong
The Effect of Isentropic Exponent on Transonic Turbine Performance
- DOI:10.1115/1.4046528
- 发表时间:2020-08-01
- 期刊:
- 影响因子:1.7
- 作者:Baumgartner, David;Otter, John J.;Wheeler, Andrew P. S.
- 通讯作者:Wheeler, Andrew P. S.
A Study of the Three-Dimensional Unsteady Real-Gas Flows Within a Transonic ORC Turbine
- DOI:10.1115/gt2014-25475
- 发表时间:2014-06
- 期刊:
- 影响因子:0
- 作者:Andrew P. S. Wheeler;J. Ong
- 通讯作者:Andrew P. S. Wheeler;J. Ong
THE ROLE OF DENSE GAS DYNAMICS ON ORC TURBINE PERFORMANCE
稠密气体动力学对 ORC 涡轮机性能的作用
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Wheeler, Andrew P. S.
- 通讯作者:Wheeler, Andrew P. S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Wheeler其他文献
The scales of recovery: Balancing posttraumatic stress with resilience in the violently injured
恢复的规模:平衡创伤后压力与遭受暴力伤害的人的复原力
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.4
- 作者:
Andrew Wheeler;L. Tatebe;C. Reese;Beth;Sydney Pekarek;Nandini Rajaram Siva;Erik Liesen;V. Schlanser;M. Kaminsky;T. Messer;F. Starr;Justin Mis;F. Bokhari;A. Dennis - 通讯作者:
A. Dennis
A213 Recent Smoking History and Risk of Post-operative Complications Following Weight Loss Surgery: Analysis of Metabolic and Bariatric Surgery Accreditation and Quality improvement Project (MBSAQIP)
- DOI:
10.1016/j.soard.2019.08.158 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Milot Thaqi;Andrew Wheeler;Rama Ganga;Jay Jennings - 通讯作者:
Jay Jennings
Network Distance and Fatal Outcomes among Gunshot Wound Victims
枪伤受害者的网络距离和致命后果
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
G. Circo;Andrew Wheeler - 通讯作者:
Andrew Wheeler
The Dead Zone-- Gulf of Mexico Policy Brief: Improving the nitrogen pollution in the Gulf of Mexico Through Better Regulation System
死亡区——墨西哥湾政策简报:通过更好的监管体系改善墨西哥湾的氮污染
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Cathy Dong;Andrew Wheeler - 通讯作者:
Andrew Wheeler
The future health and environmental sustainability of South East Queensland: an evaluation of the Regional Plan
昆士兰东南部未来的健康和环境可持续性:区域规划评估
- DOI:
10.1080/07293682.2010.508203 - 发表时间:
2010 - 期刊:
- 影响因子:1.2
- 作者:
Andrew Wheeler;S. Thompson - 通讯作者:
S. Thompson
Andrew Wheeler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Wheeler', 18)}}的其他基金
Transforming heat-recovery system performance by exploiting multi component turbine flows
通过利用多组分涡轮流来改变热回收系统的性能
- 批准号:
EP/L027437/1 - 财政年份:2014
- 资助金额:
$ 12.74万 - 项目类别:
Fellowship
相似国自然基金
基于切平面受限Power图的快速重新网格化方法
- 批准号:62372152
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多约束Power图快速计算算法研究
- 批准号:61972128
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
复合气体条件下可逆固体氧化物电池“电-气”转换特性研究
- 批准号:51877173
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
网格曲面上质心Power图的快速计算及应用
- 批准号:61772016
- 批准年份:2017
- 资助金额:46.0 万元
- 项目类别:面上项目
离散最优传输问题,闵可夫斯基问题和蒙奇-安培方程中的变分原理和Power图
- 批准号:11371220
- 批准年份:2013
- 资助金额:50.0 万元
- 项目类别:面上项目
几何约束视角下异构群体队形光滑变换控制方法研究
- 批准号:61300118
- 批准年份:2013
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
云计算环境下数据中心的power capping关键问题研究
- 批准号:61272460
- 批准年份:2012
- 资助金额:81.0 万元
- 项目类别:面上项目
基于信道Time/Power度量指标的TOA测距误差模型及其应用研究
- 批准号:61172049
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
离散谱聚合与谱廓受限的传输理论与技术的研究
- 批准号:60972057
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
低功耗集成多级放大器的设计研究
- 批准号:60976028
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
- 批准号:
2321862 - 财政年份:2024
- 资助金额:
$ 12.74万 - 项目类别:
Cooperative Agreement
Development of a long-term thermochemical energy storage system with simutaneous high heat power and storage density by utilizating a moving bed reactor based on nano coated salt hydrates
利用基于纳米涂层盐水合物的移动床反应器开发同时具有高热功率和存储密度的长期热化学储能系统
- 批准号:
24K08316 - 财政年份:2024
- 资助金额:
$ 12.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CLEANER - Clean Heat and Power from Hydrogen
CLEANER——利用氢气清洁热能和电力
- 批准号:
10103876 - 财政年份:2024
- 资助金额:
$ 12.74万 - 项目类别:
EU-Funded
Accelerating net zero tourism: algorithm-driven optimisation of per stay carbon emissions from power, heat and mobility
加速净零旅游业:算法驱动的电力、热力和交通每次住宿碳排放优化
- 批准号:
10079701 - 财政年份:2023
- 资助金额:
$ 12.74万 - 项目类别:
Collaborative R&D
Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
- 批准号:
EP/Y004973/1 - 财政年份:2023
- 资助金额:
$ 12.74万 - 项目类别:
Research Grant
Basic Study of Thermoacoustic Electric Power Generation -Development of Heat, Sound, and Electric Energy Transducer
热声发电基础研究-热、声、电能换能器的开发
- 批准号:
23K03730 - 财政年份:2023
- 资助金额:
$ 12.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Micro-FloTec: Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption
Micro-FloTec:Microscale 支持先进的流动和传热技术,具有高性能和低功耗的特点
- 批准号:
EP/X038319/1 - 财政年份:2023
- 资助金额:
$ 12.74万 - 项目类别:
Research Grant
Development of Transpiration-Type Thermoelectric Power Generation Elements that Require No Heat Source
无需热源的蒸腾式温差发电元件的开发
- 批准号:
23K17814 - 财政年份:2023
- 资助金额:
$ 12.74万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A study of thermal photonics power generation for effective utilization of waste heat energy
有效利用余热的热光子发电研究
- 批准号:
23H01353 - 财政年份:2023
- 资助金额:
$ 12.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
"Green" Tea: creating clean heat and power with biomass residues and gasification technology to future-proof your cuppa.
“绿”茶:利用生物质残留物和气化技术创造清洁的热能和电力,让您的茶永不过时。
- 批准号:
10038248 - 财政年份:2023
- 资助金额:
$ 12.74万 - 项目类别:
Feasibility Studies