Transforming heat-recovery system performance by exploiting multi component turbine flows

通过利用多组分涡轮流来改变热回收系统的性能

基本信息

  • 批准号:
    EP/L027437/1
  • 负责人:
  • 金额:
    $ 101.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Living standards in the UK are at significant risk from the rising costs of energy and the increasing gap between demand and the UK's generating capacity. Plugging this gap requires technological innovations which are affordable and can be implemented over reasonably short time-scales. An important area where efficiency gains can be achieved quickly is improving the management of heat released from industrial processes. All industrial and power generation processes produce heat which is often released into the environment in the form of high temperature exhaust products. New technologies are being developed to recover this otherwise wasted energy for use elsewhere, such as electricity, heating or cooling. If applied across the UK manufacturing sector, these technologies could save the energy output of around 20 power stations. Heat-recovery technologies are also used for renewable power from biomass, geothermal, solar-thermal sources and in de-centralized power generation. The development of heat recovery technology is therefore important in terms of cutting our carbon footprint as well as increasing UK energy security. Heat recovery systems work by transferring heat into a high-pressure working-fluid, using a heat exchanger. In order to produce electricity, the working fluid drives a turbine which is connected to an electrical generator. Heat recovery systems often use working fluids which are refrigerants or long-chain hydrocarbons. The properties of these working fluids differ greatly from those which have traditionally been used within turbines (such as air within aero-engines/gas-turbines or water vapour within steam turbines) and can be made up of several components including mixtures of gases and liquids. There is very little known about the behaviour of these unconventional working fluids within turbines largely due to a lack of experimental data with which to test current theories. This is important because turbine designers require accurate models in order to develop high performance machines, and uncertainties in the modelling can have a detrimental impact on both the development costs and the overall performance of a heat recovery system. There is also a potential to exploit the unusual behaviour of these working fluids, such as their ability to change from liquid to gas across the turbine, which can be exploited to increase system power to size ratios (power density) in ways not possible using normal working fluids like water. The project will explore how the behaviour of multi-component fluids can be used to increase turbine performance. In order to achieve this, the work will involve developing methods to simulate multi-component fluids within turbines. The project will use experiments and computational techniques to model these flows and use the results from this work to improve current computational methods. The project involves a collaboration with GE who are global leader in the design, manufacture and supply of heat recovery systems. GE will incorporate the results of this work into their design systems. In doing so, the results from this project will accelerate the development of heat-recovery technologies which will be used world-wide.
英国的生活水平面临着能源成本上升和需求与英国发电能力之间差距扩大的重大风险。填补这一差距需要技术创新,这些创新是负担得起的,可以在相当短的时间内实施。可以快速实现效率增益的一个重要领域是改进对工业过程释放的热量的管理。所有工业和发电过程都会产生热量,这些热量通常以高温废气的形式释放到环境中。正在开发新技术,以回收这些否则会浪费的能源,用于其他地方,如电力,供暖或制冷。如果这些技术应用于英国制造业,可以节省大约20个发电站的能源输出。热回收技术还用于生物量、地热、太阳能-热源的可再生能源发电和分散式发电。因此,热回收技术的发展对于减少我们的碳足迹以及提高英国的能源安全至关重要。热回收系统通过使用热交换器将热传递到高压工作流体中来工作。为了发电,工作流体驱动连接到发电机的涡轮机。热回收系统通常使用制冷剂或长链烃的工作流体。这些工作流体的性质与传统上在涡轮机内使用的那些(例如航空发动机/燃气涡轮机内的空气或蒸汽涡轮机内的水蒸气)有很大不同,并且可以由包括气体和液体的混合物的几种组分组成。人们对涡轮机内这些非常规工作流体的行为知之甚少,这主要是由于缺乏测试当前理论的实验数据。这是重要的,因为涡轮机设计者需要精确的模型以便开发高性能机器,并且建模中的不确定性可能对热回收系统的开发成本和总体性能两者具有不利影响。还存在利用这些工作流体的不寻常行为的潜力,例如它们在涡轮机上从液体变为气体的能力,这可以被利用来以使用像水的正常工作流体不可能的方式增加系统功率与尺寸比(功率密度)。该项目将探索如何利用多组分流体的特性来提高涡轮机的性能。为了实现这一目标,这项工作将涉及开发方法来模拟涡轮机内的多组分流体。该项目将使用实验和计算技术来模拟这些流动,并使用这项工作的结果来改进当前的计算方法。该项目涉及与GE的合作,GE是热回收系统设计,制造和供应的全球领导者。GE将把这项工作的结果纳入其设计系统。在这样做的过程中,该项目的结果将加速热回收技术的发展,这些技术将在世界范围内使用。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monitoring Air Pollution in Greek Urban Areas During the Lockdowns, as a Response Measure of SARS-CoV-2 (COVID-19).
作为 SARS-CoV-2 (COVID-19) 的应对措施,在封锁期间监测希腊城市地区的空气污染。
  • DOI:
    10.1007/978-3-030-69306-0_13
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Avdoulou MM
  • 通讯作者:
    Avdoulou MM
The Effect of Isentropic Exponent on Transonic Turbine Performance
The Effect of Compressibility Factor on Turbine Performance
压缩系数对涡轮机性能的影响
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baumgärtner D
  • 通讯作者:
    Baumgärtner D
A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines
  • DOI:
    10.1115/gt2015-42920
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Galiana;Andrew P. S. Wheeler;J. Ong
  • 通讯作者:
    F. Galiana;Andrew P. S. Wheeler;J. Ong
The effect of dense gas dynamics on loss in ORC transonic turbines
稠密气体动力学对 ORC 跨音速涡轮机损失的影响
  • DOI:
    10.1088/1742-6596/821/1/012021
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Durá Galiana F
  • 通讯作者:
    Durá Galiana F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Wheeler其他文献

The scales of recovery: Balancing posttraumatic stress with resilience in the violently injured
恢复的规模:平衡创伤后压力与遭受暴力伤害的人的复原力
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Andrew Wheeler;L. Tatebe;C. Reese;Beth;Sydney Pekarek;Nandini Rajaram Siva;Erik Liesen;V. Schlanser;M. Kaminsky;T. Messer;F. Starr;Justin Mis;F. Bokhari;A. Dennis
  • 通讯作者:
    A. Dennis
A213 Recent Smoking History and Risk of Post-operative Complications Following Weight Loss Surgery: Analysis of Metabolic and Bariatric Surgery Accreditation and Quality improvement Project (MBSAQIP)
  • DOI:
    10.1016/j.soard.2019.08.158
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Milot Thaqi;Andrew Wheeler;Rama Ganga;Jay Jennings
  • 通讯作者:
    Jay Jennings
The Dead Zone-- Gulf of Mexico Policy Brief: Improving the nitrogen pollution in the Gulf of Mexico Through Better Regulation System
死亡区——墨西哥湾政策简报:通过更好的监管体系改善墨西哥湾的氮污染
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cathy Dong;Andrew Wheeler
  • 通讯作者:
    Andrew Wheeler
Network Distance and Fatal Outcomes among Gunshot Wound Victims
枪伤受害者的网络距离和致命后果
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Circo;Andrew Wheeler
  • 通讯作者:
    Andrew Wheeler
The future health and environmental sustainability of South East Queensland: an evaluation of the Regional Plan
昆士兰东南部未来的健康和环境可持续性:区域规划评估
  • DOI:
    10.1080/07293682.2010.508203
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Andrew Wheeler;S. Thompson
  • 通讯作者:
    S. Thompson

Andrew Wheeler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Wheeler', 18)}}的其他基金

Achieving high power heat-recovery systems using molecularly-complex fluids
使用分子复合流体实现高功率热回收系统
  • 批准号:
    EP/J006394/1
  • 财政年份:
    2012
  • 资助金额:
    $ 101.77万
  • 项目类别:
    Research Grant

相似国自然基金

热应激通过MAPK信号通路介导Vγ9Vδ2 T细胞抗肿瘤活性调控作用研究
  • 批准号:
    32000534
  • 批准年份:
    2020
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
组蛋白去甲基酶KDM3A的磷酸化修饰调控基因差异表达的分子机制
  • 批准号:
    31171239
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
太阳能吸附制冷管在光热制冷循环中传热特性研究
  • 批准号:
    50976073
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
数值化方法改进密度泛函计算能量精度的研究
  • 批准号:
    20973138
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
纳米涂层表面上池沸腾防垢和强化传热的机理研究
  • 批准号:
    20876106
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
环路热管(Loop Heat Pipe)两相传热机理的理论与实验研究
  • 批准号:
    50676006
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
变压吸附过程中微尺度传质与传热交叉耦合规律
  • 批准号:
    20676154
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
变压吸附中真空脱附过程的传质传热规律研究
  • 批准号:
    20576028
  • 批准年份:
    2005
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Geothermal heat recovery and energy storage from underground mines
地下矿山的地热热回收和能源储存
  • 批准号:
    DE240100204
  • 财政年份:
    2024
  • 资助金额:
    $ 101.77万
  • 项目类别:
    Discovery Early Career Researcher Award
Electrolyser Improvements driven by Waste Heat Recovery
废热回收推动电解槽改进
  • 批准号:
    10052878
  • 财政年份:
    2023
  • 资助金额:
    $ 101.77万
  • 项目类别:
    Feasibility Studies
The interface of transcription, DNA damage and epigenetics: A therapeutic vulnerability of the EWS-FLI1 transcription factor
转录、DNA 损伤和表观遗传学的界面:EWS-FLI1 转录因子的治疗脆弱性
  • 批准号:
    10718793
  • 财政年份:
    2023
  • 资助金额:
    $ 101.77万
  • 项目类别:
Heat therapy for the treatment of SCI-induced changes in nociceptor and mitochondrial function
热疗法治疗 SCI 引起的伤害感受器和线粒体功能变化
  • 批准号:
    10641385
  • 财政年份:
    2023
  • 资助金额:
    $ 101.77万
  • 项目类别:
FORUM ON MEDICAL AND PUBLIC HEALTH PREPAREDNESS FOR DISASTERS AND EMERGENCIES AND ACTION COLLABORATIVE ON DISASTERS/PUBLIC HEALTH EMERGENCY RESEARCH
灾害和紧急情况医疗和公共卫生防备论坛以及灾害/公共卫生紧急情况研究行动合作
  • 批准号:
    10937101
  • 财政年份:
    2023
  • 资助金额:
    $ 101.77万
  • 项目类别:
Transformative Recovery of Low-Grade Waste Heat using Ionic Thermoelectrics
利用离子热电技术改造回收低品位废热
  • 批准号:
    EP/W037300/2
  • 财政年份:
    2023
  • 资助金额:
    $ 101.77万
  • 项目类别:
    Research Grant
Waste Heat Recovery of the Fuel Cell Systems
燃料电池系统的余热回收
  • 批准号:
    2892992
  • 财政年份:
    2023
  • 资助金额:
    $ 101.77万
  • 项目类别:
    Studentship
Health Effects of Hurricane Ian
飓风伊恩对健康的影响
  • 批准号:
    10743484
  • 财政年份:
    2023
  • 资助金额:
    $ 101.77万
  • 项目类别:
Extreme Heat and Acute Myocardial Infarction: Effect Modifications by Sex, Medical History, and Air Pollution
酷热和急性心肌梗塞:性别、病史和空气污染的影响
  • 批准号:
    10709134
  • 财政年份:
    2023
  • 资助金额:
    $ 101.77万
  • 项目类别:
The function of descending and ascending pathways in spastic hypertonia and hyperreflexia after stroke
下行和上升通路在脑卒中后痉挛性肌张力增高和反射亢进中的作用
  • 批准号:
    10633964
  • 财政年份:
    2023
  • 资助金额:
    $ 101.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了