Analysis of black hole stability.

黑洞稳定性分析。

基本信息

  • 批准号:
    EP/J011142/1
  • 负责人:
  • 金额:
    $ 12.81万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The black hole stability conjecture is a challenging problem in the analysis of nonlinear partial differential equations and is one of the major open problems in mathematical relativity. Because of work by me and others, there has been great progress on this problem in the last decade. The proposed grant would partially fund a post-doctoral research assistant (PDRA), who will be essential to maintaining the recent pace of progress. General relativity is a geometric theory of gravity, in which the universe is described by a four-dimensional set of space-time points and by an indefinite inner-product, which must satisfy the Einstein equations. Physicists believe that black holes will play a crucial role in our understanding of theoretical physics, will absorb all matter in the late stages of the universe, and are the enormously massive objects known to exist at the centre of most galaxies. Kerr's family of explicit solutions to the Einstein equation are parametrised by mass and angular momentum, and they describe black holes when the angular momentum is small relative to the mass. For zero mass, the solution reduces to the Minkowski solution, and for angular momentum zero to the Schwarzschild solution.For solutions having the appropriate asymptotic behaviour, the Kerr family is the unique family of stationary, black hole solutions of the Einstein equations. Although physicists believe that there can be no reasonable doubt that all black holes will asymptotically approach a Kerr solution, as with the Navier-Stokes equation, there is an enormous gap between what is expected on physical grounds and what can be proved. Hence, there is great interest in proving the asymptoticstability of the Kerr solutions:Conjecture K: If a set of initial data is very close to one that generates a Kerr solution, then the corresponding solution will eventually approach a Kerr solution. It is unlikely that that this conjecture can be proved without estimates on the rate of decay to the Kerr solution. For a nonlinear wave equation, which can serve as a model for the Einstein equation, it is known that for sufficiently small initial data and a sufficiently weak nonlinearity, the smallness of the initial data guarantees that the influence of the nonlinearity is small up to intermediate times, allowing the solution to decay at the same rate as a solution to the linear wave equation. Then, from intermediate to late times, since the nonlinear term is smaller than the linear terms when they are small (but larger than the linear terms, when the linear terms are large -this being the nature of the relevant nonlinear terms), the influence of the nonlinearity remains small and diminishing, so that the solution to the nonlinear equation behaves like solutions to the linear equation. Analysis of the Einstein equation is challenging because it is nonlinear and geometric and because it has both solutions for which the curvature diverges in finite time and globally smooth solutions. A thorough investigation of divergent solutions has been possible only when solutions have a high degree of symmetry. One of the landmark results in the study of mathematical relativity was the proof that the flat space (known as Minkowski space) is stable. This built on decay estimates for the wave, Maxwell, and linearised Einstein equations. In the Schwarzschild case, these equations have also been studied. In the general Kerr case, decay estimates for the wave equation have been proved, and I anticipate that my collaborators and I will have completed our analysis of the Maxwell equation by the start of this proposed period of the grant. The purpose of this grant is to continue this program, and to employ a post-doctoral researcher to investigate the linearised Einstein equation in the Kerr context. This should provide important progress that will help the mathematical relativity community resolve the Kerr stability conjecture.
黑洞稳定性猜想是非线性偏微分方程分析中的一个具有挑战性的问题,也是数学相对论中的主要开放性问题之一。由于我和其他人的努力,在过去的十年里,这个问题取得了很大的进展。拟议的拨款将部分资助博士后研究助理(PDRA),他将对保持最近的进展速度至关重要。广义相对论是一种几何引力理论,其中宇宙是由四维时空点集合和无限内积描述的,这必须满足爱因斯坦方程。物理学家认为,黑洞将在我们对理论物理学的理解中发挥至关重要的作用,它将吸收宇宙后期阶段的所有物质,并且是已知存在于大多数星系中心的巨大物体。克尔对爱因斯坦方程的显式解族是由质量和角动量参数化的,它们描述的是角动量相对于质量较小时的黑洞。对于零质量,解化为闵可夫斯基解,对于角动量为零,解化为史瓦西解。对于具有适当渐近行为的解,克尔族是爱因斯坦方程的唯一平稳黑洞解族。尽管物理学家相信,毫无疑问,所有黑洞都会像纳维-斯托克斯方程一样,渐近地接近克尔解,但在物理基础上的预期与可以证明的结果之间存在着巨大的差距。因此,人们对证明Kerr解的渐近稳定性非常感兴趣:猜想K:如果一组初始数据非常接近产生Kerr解的数据,那么相应的解最终将接近Kerr解。如果不估计克尔解的衰减速率,这个猜想是不可能被证明的。对于可以作为爱因斯坦方程模型的非线性波动方程,众所周知,对于足够小的初始数据和足够弱的非线性,初始数据的小性保证了非线性的影响在中间时间内很小,从而允许解以与线性波动方程解相同的速率衰减。然后,从中期到后期,由于非线性项在线性项较小时小于线性项(但在线性项较大时大于线性项-这是相关非线性项的性质),非线性的影响仍然很小并且逐渐减小,因此非线性方程的解表现得像线性方程的解一样。爱因斯坦方程的分析是具有挑战性的,因为它是非线性和几何的,因为它既有曲率在有限时间内发散的解,也有全局光滑的解。只有当解具有高度对称性时,才有可能对发散解进行彻底的研究。在数学相对论的研究中具有里程碑意义的结果之一是证明了平坦空间(称为闵可夫斯基空间)是稳定的。这是建立在对波的衰减估计、麦克斯韦和线性化的爱因斯坦方程的基础上。在史瓦西情况下,这些方程也被研究过。在一般的克尔案例中,波动方程的衰减估计已经被证明了,我预计我和我的合作者将在这个提议的资助期开始时完成对麦克斯韦方程的分析。这项资助的目的是为了继续这个项目,并雇用一名博士后研究人员在克尔背景下研究线性化的爱因斯坦方程。这将提供重要的进展,将有助于数学相对论界解决克尔稳定性猜想。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
New identities for linearized gravity on the Kerr spacetime
克尔时空中线性化引力的新恒等式
  • DOI:
    10.1103/physrevd.99.044043
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Aksteiner S
  • 通讯作者:
    Aksteiner S
Spin geometry and conservation laws in the Kerr spacetime
克尔时空中的自旋几何和守恒定律
Decay of solutions to the Maxwell equation on the Schwarzschild background
史瓦西背景下麦克斯韦方程解的衰减
  • DOI:
    10.48550/arxiv.1501.04641
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andersson L
  • 通讯作者:
    Andersson L
Hidden symmetries and decay for the wave equation on the Kerr spacetime
  • DOI:
    10.4007/annals.2015.182.3.1
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Andersson, Lars;Blue, Pieter
  • 通讯作者:
    Blue, Pieter
Uniform energy bound and asymptotics for the Maxwell field on a slowly rotating Kerr black hole exterior
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pieter Blue其他文献

Morawetz Estimate for Linearized Gravity in Schwarzschild
史瓦西线性重力的 Morawetz 估计
  • DOI:
    10.1007/s00023-020-00886-5
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lars Andersson;Pieter Blue;Jinhua Wang
  • 通讯作者:
    Jinhua Wang

Pieter Blue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

空间分数阶 Black-Scholes 方程的波动率反演 问题
  • 批准号:
    Q24A010012
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Black-Scholes期权定价模型的时间自适应算法与分析
  • 批准号:
    12271142
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
复杂衍生品定价的新型拉氏变换方法
  • 批准号:
    11671323
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
新老岛弧斑岩铜(金)矿中间岩浆房过程对比研究:以菲律宾 Black Mountain和我国多宝山为例
  • 批准号:
    41672090
  • 批准年份:
    2016
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
非线性Black-Scholes方程有限差分并行计算的新方法研究
  • 批准号:
    11371135
  • 批准年份:
    2013
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
星系恒星与气体的动力学演化
  • 批准号:
    11073025
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
中国南方早古生代黑色岩系中硒的地球化学循环及其成矿效应
  • 批准号:
    40773034
  • 批准年份:
    2007
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
非Black-Scholes 模型环境下的未定权益的定价和套期保值研究
  • 批准号:
    70771006
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    面上项目
黄、东海沉积物中碳黑(Black Carbon)的地球化学研究
  • 批准号:
    40576039
  • 批准年份:
    2005
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
统计物理模型在金融领域中的应用
  • 批准号:
    70471001
  • 批准年份:
    2004
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Analysis of the Black Hole Interior and Strong Cosmic Censorship
黑洞内部分析和强大的宇宙审查
  • 批准号:
    2247376
  • 财政年份:
    2023
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Standard Grant
Gravitational Wave Data Analysis: Parameter Inference and Black Hole Ringdown
引力波数据分析:参数推断和黑洞衰荡
  • 批准号:
    2308833
  • 财政年份:
    2023
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Continuing Grant
Testing black hole spin limit by gravitational wave data analysis
通过引力波数据分析测试黑洞自旋极限
  • 批准号:
    23K03381
  • 财政年份:
    2023
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Testing general relativity by gravitational wave data analysis of black hole quasinormal modes
通过黑洞准正态模式的引力波数据分析检验广义相对论
  • 批准号:
    21K03582
  • 财政年份:
    2021
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction and stability analysis of new black hole solutions predicted by topological censorship theorems
拓扑审查定理预测的新黑洞解的构造及稳定性分析
  • 批准号:
    21K03560
  • 财政年份:
    2021
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The construction of new topological black hole solutions and its stability analysis
新拓扑黑洞解的构造及其稳定性分析
  • 批准号:
    17K05452
  • 财政年份:
    2017
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
  • 批准号:
    386420-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
  • 批准号:
    386420-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis of black hole spacetimes
黑洞时空分析
  • 批准号:
    1161607
  • 财政年份:
    2012
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Continuing Grant
Three problems in geometric analysis: The black hole uniqueness question, minimal surfaces in hyperbolic space, and global Kahler invariants
几何分析中的三个问题:黑洞唯一性问题、双曲空间中的最小曲面和全局卡勒不变量
  • 批准号:
    396098-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 12.81万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了