Seeing how polymer chains organise with torsional tapping atomic force microscopy
通过扭转攻丝原子力显微镜观察聚合物链如何组织
基本信息
- 批准号:EP/J013005/1
- 负责人:
- 金额:$ 40.3万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our understanding of semicrystalline polymers, the class of polymers that by far and away dominates usage in modern society, is surprisingly poor. At a molecular scale we rely on cartoons and inference, unable to reach the certainty obtained in other areas of material science by direct, atomic or molecular scale imaging, and by diffraction from macroscopic crystals. Yet in polymers the structure at this level is arguably more important as it determines the properties from mechanical behaviour to the oxygen barrier performance through the adhesive behaviour to the aesthetic appeal. Recently we developed a new form of atomic force microscopy, torsional tapping AFM (TTAFM) capable of robustly and routinely obtaining images with true molecular resolution on the most frequently used polymers (polyolefins, that include polyethylene and polypropylene) in essentially any sample. This step change in performance is based on the improved dynamics and signal-to-noise performance that comes from the cantilever geometry and drive mechanism. Perfecting the cantilever design is predicted to lead to even greater performance, and to allow the technique to be used in a wide range of instruments. At the same time as developing the technology we will use it to answer a string of questions that underpin our understanding of polymer crystals, questions that will lead to both greatly enhanced fundamental understanding and real application from the development of new materials and applications to problem solving during processing. We aim to directly reveal how crystallization temperature, variations in chain chemistry, chain branching, re-enforcing fibres and particles, control the organisation of polymer chains within the crystal and at the interface between the crystal and the non-crystalline material. While doing this we will perfect the sample preparation methods for molecular scale imaging, and enhance the cantilever design to improve performance, allowing the technique to be widely adopted both in polymer science and across molecular nanoscience.
我们对半晶聚合物的了解出人意料地差,半晶聚合物是目前在现代社会中占主导地位的一类聚合物。在分子尺度上,我们依赖于卡通和推理,无法达到在材料科学的其他领域通过直接、原子或分子尺度成像以及通过宏观晶体的衍射获得的确定性。然而,在聚合物中,这一层次的结构可以说是更重要的,因为它决定了从机械性能到氧气阻隔性能,再到粘附性和美观性的各种特性。最近,我们开发了一种新形式的原子力显微镜,扭转攻丝AFM(TTAFM),能够稳健和常规地获得几乎任何样品中最常用的聚合物(聚烯烃,包括聚乙烯和聚丙烯)的真实分子分辨率的图像。性能的这一步变化是基于改进的动力学和信噪比性能,这些性能来自悬臂几何结构和驱动机构。据预测,完善的悬臂设计将带来更好的性能,并允许该技术在各种仪器中使用。在开发这项技术的同时,我们将用它来回答一系列问题,这些问题巩固了我们对聚合物晶体的理解,这些问题将极大地提高基本理解和实际应用,从新材料和应用的开发到加工过程中的问题解决。我们的目标是直接揭示结晶温度、链化学变化、链分支、重新增强纤维和颗粒,如何控制晶体内以及晶体和非晶体材料之间的高分子链的组织。在此过程中,我们将完善分子尺度成像的样品制备方法,并加强悬臂设计以提高性能,使该技术在聚合物科学和跨分子纳米科学中得到广泛应用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jamie Hobbs其他文献
Molecular Resolution of Gram Positive Bacteria Cell Wall using AFM
- DOI:
10.1016/j.bpj.2018.11.2306 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Laia Pasquina Lemonche;Jonathan Burns;Robert Turner;Simon Foster;Jamie Hobbs - 通讯作者:
Jamie Hobbs
Jamie Hobbs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jamie Hobbs', 18)}}的其他基金
The Physics of Antimicrobial Resistance
抗菌素耐药性的物理学
- 批准号:
EP/T002778/1 - 财政年份:2019
- 资助金额:
$ 40.3万 - 项目类别:
Research Grant
Sheffield antimicrobial resistance network - SHAMROK
谢菲尔德抗菌素耐药性网络 - SHAMROK
- 批准号:
EP/M027430/1 - 财政年份:2015
- 资助金额:
$ 40.3万 - 项目类别:
Research Grant
FastScan atomic force microscope for rapid imaging and property measurement of biological systems under natural conditions.
FastScan原子力显微镜,用于自然条件下生物系统的快速成像和特性测量。
- 批准号:
BB/L014904/1 - 财政年份:2014
- 资助金额:
$ 40.3万 - 项目类别:
Research Grant
In-situ AFM of pathogenic proteins involved in meningitis and septicaemia
脑膜炎和败血症相关致病蛋白的原位 AFM
- 批准号:
G0802580/1 - 财政年份:2009
- 资助金额:
$ 40.3万 - 项目类别:
Research Grant
Development of video atomic force microscopy for in vivo bioimaging of biological processes
开发用于生物过程体内生物成像的视频原子力显微镜
- 批准号:
BB/E001378/1 - 财政年份:2006
- 资助金额:
$ 40.3万 - 项目类别:
Research Grant
相似海外基金
Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
- 批准号:
2881629 - 财政年份:2027
- 资助金额:
$ 40.3万 - 项目类别:
Studentship
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 40.3万 - 项目类别:
Fellowship
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
- 批准号:
2594635 - 财政年份:2025
- 资助金额:
$ 40.3万 - 项目类别:
Studentship
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
- 批准号:
2334517 - 财政年份:2024
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 40.3万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 40.3万 - 项目类别:
Continuing Grant