Seeing how polymer chains organise with torsional tapping atomic force microscopy

通过扭转攻丝原子力显微镜观察聚合物链如何组织

基本信息

  • 批准号:
    EP/J013005/1
  • 负责人:
  • 金额:
    $ 40.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Our understanding of semicrystalline polymers, the class of polymers that by far and away dominates usage in modern society, is surprisingly poor. At a molecular scale we rely on cartoons and inference, unable to reach the certainty obtained in other areas of material science by direct, atomic or molecular scale imaging, and by diffraction from macroscopic crystals. Yet in polymers the structure at this level is arguably more important as it determines the properties from mechanical behaviour to the oxygen barrier performance through the adhesive behaviour to the aesthetic appeal. Recently we developed a new form of atomic force microscopy, torsional tapping AFM (TTAFM) capable of robustly and routinely obtaining images with true molecular resolution on the most frequently used polymers (polyolefins, that include polyethylene and polypropylene) in essentially any sample. This step change in performance is based on the improved dynamics and signal-to-noise performance that comes from the cantilever geometry and drive mechanism. Perfecting the cantilever design is predicted to lead to even greater performance, and to allow the technique to be used in a wide range of instruments. At the same time as developing the technology we will use it to answer a string of questions that underpin our understanding of polymer crystals, questions that will lead to both greatly enhanced fundamental understanding and real application from the development of new materials and applications to problem solving during processing. We aim to directly reveal how crystallization temperature, variations in chain chemistry, chain branching, re-enforcing fibres and particles, control the organisation of polymer chains within the crystal and at the interface between the crystal and the non-crystalline material. While doing this we will perfect the sample preparation methods for molecular scale imaging, and enhance the cantilever design to improve performance, allowing the technique to be widely adopted both in polymer science and across molecular nanoscience.
我们对半结晶聚合物的理解是令人惊讶的,这类聚合物在现代社会中占据主导地位。在分子尺度上,我们依赖于漫画和推理,无法达到材料科学其他领域通过直接,原子或分子尺度成像以及宏观晶体衍射获得的确定性。然而,在聚合物中,该水平的结构可以说是更重要的,因为它决定了从机械行为到氧气阻隔性能,通过粘合行为到美学吸引力的性能。最近,我们开发了一种新形式的原子力显微镜,扭转轻敲AFM(TTAFM)能够鲁棒和常规获得图像与真正的分子分辨率上最常用的聚合物(聚烯烃,包括聚乙烯和聚丙烯)在基本上任何样品。性能的这种阶跃变化是基于悬臂几何形状和驱动机制带来的改进的动态和信噪比性能。预计完善悬臂梁设计将带来更高的性能,并允许该技术在广泛的仪器中使用。在开发这项技术的同时,我们将用它来回答一系列问题,这些问题巩固了我们对聚合物晶体的理解,这些问题将大大增强对聚合物晶体的基本理解和真实的应用,从开发新材料和应用到解决加工过程中的问题。我们的目标是直接揭示结晶温度、链化学变化、链支化、增强纤维和颗粒如何控制晶体内以及晶体与非结晶材料之间界面处的聚合物链的组织。在这样做的同时,我们将完善分子尺度成像的样品制备方法,并增强悬臂梁设计以提高性能,使该技术在聚合物科学和分子纳米科学中得到广泛采用。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jamie Hobbs其他文献

Molecular Resolution of Gram Positive Bacteria Cell Wall using AFM
  • DOI:
    10.1016/j.bpj.2018.11.2306
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Laia Pasquina Lemonche;Jonathan Burns;Robert Turner;Simon Foster;Jamie Hobbs
  • 通讯作者:
    Jamie Hobbs

Jamie Hobbs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jamie Hobbs', 18)}}的其他基金

The Physics of Antimicrobial Resistance
抗菌素耐药性的物理学
  • 批准号:
    EP/T002778/1
  • 财政年份:
    2019
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Research Grant
Cellular Force Microscope.
细胞力显微镜。
  • 批准号:
    BB/R02197X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Research Grant
Sheffield antimicrobial resistance network - SHAMROK
谢菲尔德抗菌素耐药性网络 - SHAMROK
  • 批准号:
    EP/M027430/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Research Grant
FastScan atomic force microscope for rapid imaging and property measurement of biological systems under natural conditions.
FastScan原子力显微镜,用于自然条件下生物系统的快速成像和特性测量。
  • 批准号:
    BB/L014904/1
  • 财政年份:
    2014
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Research Grant
In-situ AFM of pathogenic proteins involved in meningitis and septicaemia
脑膜炎和败血症相关致病蛋白的原位 AFM
  • 批准号:
    G0802580/1
  • 财政年份:
    2009
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Research Grant
Development of video atomic force microscopy for in vivo bioimaging of biological processes
开发用于生物过程体内生物成像的视频原子力显微镜
  • 批准号:
    BB/E001378/1
  • 财政年份:
    2006
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Research Grant

相似海外基金

Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Studentship
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Fellowship
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Studentship
Take Me and Make It Happen! How-to Books from the Ferguson Collection Glasgow, and Corresponding Holdings at the Herzog August Bibliothek Wolfenbüttel
带我去实现它!
  • 批准号:
    AH/Y007522/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Research Grant
How Large Earthquakes Change Our Dynamically Deforming Planet
大地震如何改变我们动态变形的星球
  • 批准号:
    DP240102450
  • 财政年份:
    2024
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Discovery Projects
Learning how we learn: linking inhibitory brain circuits to motor learning
了解我们如何学习:将抑制性大脑回路与运动学习联系起来
  • 批准号:
    DE240100201
  • 财政年份:
    2024
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding how predictions modulate visual perception
了解预测如何调节视觉感知
  • 批准号:
    DE240100327
  • 财政年份:
    2024
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Discovery Early Career Researcher Award
How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
  • 批准号:
    DE240100614
  • 财政年份:
    2024
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Research Grant
The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
  • 批准号:
    EP/Z000610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.3万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了