Thermodynamic formalism and flows on moduli space
热力学形式主义和模空间上的流动
基本信息
- 批准号:EP/J013560/1
- 负责人:
- 金额:$ 33.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the broadest sense, Ergodic theory is the branch of analysis which has developed most rapidly in the last century, and which has had many striking achievements, particularly in the past few decades. This is noticable, in particular, in terms of applications to number theory. Notable important highlights were Wolf prize winner Furstenberg's proof of Szemerdi's theorem on arithmetic progressions; Fields' medallist Margulis' proof of the Oppenheim conjecture and the Einsideler-Katok-Lindenstrauss (another Fields' medallist) contribution to the classical Littlewood conjecture. Many of these proofs use a particularly geometric viewpoint. The general principle of applying ergodic theory to geometry is now both well established and fundamental. This is bourne out by the examples of the fundamental and classical Mostow rigidity theorem (which, of course, show that in higher dimensions the Moduli space is trivial and emphasizes the interest in surfaces) and the seminal work of Margulis on lattice point and closed orbit counting for negatively curved manifolds, and super-rigidity for Lie groups.Historically, ergodic theory has its roots in theoretical physics and, in particular, statistical mechanics, and is generally concerned with the long term stochastic behaviour of deterministic dynamical systems. Moreover, one of the key methods of our analysis, thermodynamic formalism, is a particularly fruitful branch of ergodic theory, with strong connections to statistical mechanics.The underlying theme in the proposed programme of research is to study the application of ergodic theory and thermodynamic formalism in order to gain a better insight into metrics on Riemann surfaces and their geometry. The connection between ergodic theory and geometry in our proposal comes from the classical viewpoint of studying the dynamics of the geodesic flow. However, considering the flow on moduli spaces, instead of classical Riemannian manifolds, leads to more challenging technical problems.The programme of proposed research is divided into four key areas. Firstly, studying the dynamics of the Weil-Petersson geodesic flow. This is an area in which there has been considerable progress in the past couple of years, and we have made particular contributions to this. In particular, the Weil-Petersson metric is one which has negative curvature(s) and thus is amenable to many classical techniques in ergodic theory, by analogy with the theory of scattering billiards (notwithstanding some considerable technical problems). Moreover, the subtle interplay between the dynamics and the geometry gives a greater insight into both aspects. A second area is the study of the Teichmuller geodesic flow. This is a topic which has received considerable attention from leading experts in mathematics (e.g., Fields' medallists McMullen and Kontsevich). However, statistical properties of such flows can be studied using techniques from thermodynamic formalism since the flows can be conveniently realised as suspension flows over countable branch expanding maps.A third area of investigation relates to the determinant of the laplacian, whose origins are related to mathematical physics. This is a function defined on the space of function whose behaviour is particularly mysterious. Using techniques we have developed over several years we will determine interesting values and points associated to the function. In particular, we expect to resolve a long standing problem of Sarnak in this area.The final area of study is at the level of the surfaces themselves. We want to give a new interpretation for the canonical invariants discovered by Forni-Flaminio in the special case of surfaces of constant curvature and to extend the theory to more general surfaces. The basic approach uses recent work of ours on the dynamical zeta function. This offers the possibility of opening up a whole new field of research.
在最广泛的意义上,遍历理论是上个世纪发展最快的分析分支,特别是在过去的几十年里取得了许多令人惊叹的成就。这一点特别值得注意,尤其是在数论的应用方面。值得注意的重要亮点是沃尔夫奖获得者芙丝汀宝证明了Szmerdi关于算术级数的定理;菲尔兹的奖牌获得者Marguis证明了奥本海姆猜想,以及Einsideler-Katok-Lindenstrauss(另一个菲尔兹的奖牌获得者)对经典利特尔伍德猜想的贡献。这些证明中的许多都使用了特殊的几何观点。将遍历理论应用于几何学的一般原则现在已经确立,而且是基本的。这是通过基本和经典的Mostow刚性定理(当然,它表明在更高的维度上模空间是平凡的并强调对曲面的兴趣)和Marguis关于负曲线流形的格点和闭合轨道计数以及Lie群的超刚性的开创性工作的例子来说明的。历史上,遍历理论植根于理论物理,特别是统计力学,通常与确定性动力系统的长期随机行为有关。此外,我们分析的关键方法之一,热力学形式主义,是遍历理论的一个特别富有成果的分支,与统计力学有很强的联系。拟议的研究方案的基本主题是研究遍历理论和热力学形式主义的应用,以便更好地洞察黎曼曲面及其几何上的度量。在我们的建议中,遍历理论和几何之间的联系来自于研究测地线流动力学的经典观点。然而,考虑模空间上的流,而不是经典的黎曼流形,导致了更具挑战性的技术问题。首先,研究了Weil-Petersson测地线流的动力学。这是一个在过去几年中取得了相当大进展的领域,我们在这方面做出了特别的贡献。特别地,Weil-Petersson度规是一种负曲率度规(S),因此类似于散射台球理论,它适用于遍历理论中的许多经典技术(尽管存在一些相当大的技术问题)。此外,动力学和几何学之间的微妙相互作用使我们能够更好地洞察这两个方面。第二个领域是对泰希穆勒测地线流的研究。这是一个受到顶尖数学专家(例如,菲尔兹的奖牌获得者麦克马伦和康采维奇)相当关注的话题。然而,这种流动的统计性质可以使用热力学形式的技术来研究,因为这种流动可以方便地实现为在可数分支扩展映射上的悬浮流动。第三个研究领域涉及拉普拉斯行列式,其起源与数学物理有关。这是一个定义在函数空间上的函数,其行为特别神秘。使用我们几年来开发的技术,我们将确定与该函数相关的有趣的值和点。特别是,我们希望解决Sarnak在这一领域的一个长期存在的问题。最后的研究领域是曲面本身的水平。我们想对Forni-Flaminio在常曲率曲面的特殊情况下发现的正则不变量给出一种新的解释,并将该理论推广到更一般的曲面。基本方法使用了我们最近关于动态Zeta函数的工作。这为开辟一个全新的研究领域提供了可能性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pointwise regularity of parameterized affine zipper fractal curves
参数化仿射拉链分形曲线的逐点正则性
- DOI:10.1088/1361-6544/aaa497
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Bárány B
- 通讯作者:Bárány B
On the complexity of the set of codings for self-similar sets and a variation on the construction of Champernowne
关于自相似集编码集的复杂性和Chambernowne构造的一种变体
- DOI:10.1016/j.aim.2019.106934
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Baker S
- 通讯作者:Baker S
Two bifurcation sets arising from the beta transformation with a hole at 0
由 0 处有孔的 beta 变换产生的两个分叉集
- DOI:10.1016/j.indag.2020.03.001
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Baker S
- 通讯作者:Baker S
On the dimension of self-affine sets and measures with overlaps
关于自仿射集和重叠测度的维数
- DOI:10.48550/arxiv.1504.07138
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Bárány B
- 通讯作者:Bárány B
Thermodynamic Formalism - CIRM Jean-Morlet Chair, Fall 2019
热力学形式主义 - CIRM Jean-Morlet 主席,2019 年秋季
- DOI:10.1007/978-3-030-74863-0_12
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Pollicott M
- 通讯作者:Pollicott M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Pollicott其他文献
A note on uniform distribution for primes and closed orbits
- DOI:
10.1007/bf02801995 - 发表时间:
1986-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Mark Pollicott - 通讯作者:
Mark Pollicott
Some remarks on the dynamics of the Mixmaster universe
- DOI:
10.1007/bf02970868 - 发表时间:
2004-09-01 - 期刊:
- 影响因子:2.100
- 作者:
Mark Pollicott;Howard Weiss - 通讯作者:
Howard Weiss
How Smooth is Your Wavelet? Wavelet Regularity via Thermodynamic Formalism
- DOI:
10.1007/s00220-008-0457-x - 发表时间:
2008-05-06 - 期刊:
- 影响因子:2.600
- 作者:
Mark Pollicott;Howard Weiss - 通讯作者:
Howard Weiss
One-dimensional maps via complex analysis in several variables
- DOI:
10.1007/bf02761654 - 发表时间:
1995-10-01 - 期刊:
- 影响因子:0.800
- 作者:
Mark Pollicott - 通讯作者:
Mark Pollicott
Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature
- DOI:
10.1007/bf01232242 - 发表时间:
1994-12-01 - 期刊:
- 影响因子:3.600
- 作者:
Mark Pollicott;Richard Sharp - 通讯作者:
Richard Sharp
Mark Pollicott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Pollicott', 18)}}的其他基金
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
- 批准号:
EP/W033917/1 - 财政年份:2023
- 资助金额:
$ 33.88万 - 项目类别:
Research Grant
Transfer operators and emergent dynamics in hyperbolic systems
双曲系统中的传递算子和涌现动力学
- 批准号:
EP/V053663/1 - 财政年份:2021
- 资助金额:
$ 33.88万 - 项目类别:
Research Grant
Dynamical zeta functions and resonances for infinite area surfaces
无限面积表面的动态 zeta 函数和共振
- 批准号:
EP/T001674/1 - 财政年份:2019
- 资助金额:
$ 33.88万 - 项目类别:
Research Grant
Applications of ergodic theory to geometry: Dynamical Zeta Functions and their applications
遍历理论在几何中的应用:动态 Zeta 函数及其应用
- 批准号:
EP/M001903/1 - 财政年份:2014
- 资助金额:
$ 33.88万 - 项目类别:
Fellowship
A transfer operator approach to Maass cusp forms and the Selberg zeta function
Maass 尖点形式和 Selberg zeta 函数的传递算子方法
- 批准号:
EP/K000799/1 - 财政年份:2013
- 资助金额:
$ 33.88万 - 项目类别:
Research Grant
Warwick Symposium on Ergodic Theory and Dynamical Systems (ETDS) 2010-2011
沃里克历经理论和动力系统研讨会 (ETDS) 2010-2011
- 批准号:
EP/H022171/1 - 财政年份:2010
- 资助金额:
$ 33.88万 - 项目类别:
Research Grant
Maximizing measures in hyperbolic dynamics
双曲动力学测度最大化
- 批准号:
EP/E020801/1 - 财政年份:2007
- 资助金额:
$ 33.88万 - 项目类别:
Research Grant
A Taught Course Centre for the Mathematical Sciences based at Oxford, Warwick, Imperial, Bath & Bristol
位于牛津、沃里克、帝国理工、巴斯的数学科学教学课程中心
- 批准号:
EP/E501966/1 - 财政年份:2007
- 资助金额:
$ 33.88万 - 项目类别:
Training Grant
相似海外基金
Challenge on data driven research foundation by merging formalism and AI
形式主义与人工智能融合对数据驱动研究基础的挑战
- 批准号:
23K17520 - 财政年份:2023
- 资助金额:
$ 33.88万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A stochastic formalism for tensor perturbations: gravitational waves induced by non-linear effects
张量扰动的随机形式主义:非线性效应引起的引力波
- 批准号:
23KF0247 - 财政年份:2023
- 资助金额:
$ 33.88万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hamiltonian formalism in wave turbulence problems
波湍流问题中的哈密顿形式主义
- 批准号:
2307712 - 财政年份:2023
- 资助金额:
$ 33.88万 - 项目类别:
Standard Grant
Thermodynamic Formalism and Dimension of Overlapping Fractal Measures
热力学形式主义和重叠分形测度的维数
- 批准号:
2905612 - 财政年份:2022
- 资助金额:
$ 33.88万 - 项目类别:
Studentship
The best bureaucrat knows how to act. An ethnographic research on 'Chinese formalism' in bureaucratic institutions
最好的官僚知道如何行事。
- 批准号:
2754939 - 财政年份:2022
- 资助金额:
$ 33.88万 - 项目类别:
Studentship
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
- 批准号:
2153053 - 财政年份:2022
- 资助金额:
$ 33.88万 - 项目类别:
Standard Grant
Many-Body Perturbation Formalism and Computational Prediction of Exciton Dynamics in Low-Dimensional Quantum Moiré Materials
低维量子莫尔材料中激子动力学的多体摄动形式主义和计算预测
- 批准号:
568202-2022 - 财政年份:2022
- 资助金额:
$ 33.88万 - 项目类别:
Postgraduate Scholarships - Doctoral
Applying large eddy simulation to dissipative particle dynamics modeling toward better understanding of complex flow phenomena
将大涡模拟应用于耗散粒子动力学建模,以更好地理解复杂的流动现象
- 批准号:
22K03904 - 财政年份:2022
- 资助金额:
$ 33.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Aspects of the evolution dynamics of GR in the chiral formalism
手性形式主义中 GR 演化动力学的各个方面
- 批准号:
2601065 - 财政年份:2021
- 资助金额:
$ 33.88万 - 项目类别:
Studentship
Quantum circuit extraction from the Sum-over-Paths formalism
从路径求和形式中提取量子电路
- 批准号:
565041-2021 - 财政年份:2021
- 资助金额:
$ 33.88万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's