Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
基本信息
- 批准号:EP/W033917/1
- 负责人:
- 金额:$ 51.62万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In many areas of mathematics its is useful to have estimates for numerical values. In mathematical analysis this may be the notion of dimension which describes the size of sets. In the context of Ergodic Theory and dynamical systems this includes, for example, the Lyapunov exponents which measure how typical nearby orbits separate as the system evolves. In the setting of random walks on hyperbolic groups (generalizing the famous "drunkard's walk" in one dimension) it is the dimension of an associated measure (which measures how "spread out" the measure is). Whereas these values give qualitative information in each of these settings, there are particularly interesting applications when we require a precise knowledge of their values. That is, we need to know their values really do satisfy some inequality and this has two ingredients. Firstly, having a method to approximate the number which is efficient and accurate. Secondly, this result is validated - to the extent that we can have complete confidence in these results that comes from the underpinning abstract mathematics. Here the emphasis is less on the problem of computation and more on the development of an efficient algorithm and making the connection with the applications.The use of explicit numerical estimates and their surprising applications other areas of mathematics is illustrated by the density one Zaremba theorem of Fields medallist Bourgain and Kontorovich in number theory. By the Euclidan algorithm it is known that any rational number p/q can be written as a finite continued fraction, i.e., there exist natural numbers a_1, ..., a_n with p/q = 1/(a_1+1/(a_2+...)). Bourgain and Kontorovich showed that for typical q there exists a p and a_1, ..., a_n taking one of the values 1,2,3,4 or 5, with p/q = 1/(a_1+1/(a_2+...)). This crucially depends on a certain associated Cantor set in the unit interval having dimension greater than 5/6.
在数学的许多领域,对数值进行估计是有用的。在数学分析中,这可能是描述集合大小的维数的概念。在遍历理论和动力系统的背景下,这包括,例如,李雅普诺夫指数,其测量典型的附近轨道如何随着系统的演变而分离。在双曲群上的随机游动(在一维中推广了著名的“酒鬼漫步”)中,它是一个相关测度的维数(测量测度的“扩展”程度)。虽然这些值在每一个这些设置中提供定性信息,但当我们需要精确了解其值时,会有特别有趣的应用。也就是说,我们需要知道它们的值确实满足一些不等式,这有两个因素。第一,有一个方法来近似的数字,这是高效和准确的。其次,这个结果是有效的-在某种程度上,我们可以完全相信这些结果来自基础的抽象数学。在这里强调的是少的问题上的计算和更多的发展一个有效的算法,并作出连接的应用。使用明确的数值估计和他们令人惊讶的应用其他领域的数学是说明了密度一Zaremba定理的领域奖章获得者布尔甘和Kontorovich在数论。通过欧几里德算法,已知任何有理数p/q都可以写成有限连分数,即,存在自然数a_1,...,a_n,p/q = 1/(a_1+1/(a_2+...))。Bourgain和Kontorovich证明,对于典型的q,存在p和a_1,...,a_n取1,2,3,4或5之一,p/q = 1/(a_1+1/(a_2+...))。这主要取决于单位区间中的某个相关联的康托集具有大于5/6的维度。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mathematics Going Forward - Collected Mathematical Brushstrokes
数学前进——数学笔触集
- DOI:10.1007/978-3-031-12244-6_21
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pollicott M
- 通讯作者:Pollicott M
Sierpinski Fractals and the Dimension of Their Laplacian Spectrum
谢尔宾斯基分形及其拉普拉斯谱的维数
- DOI:10.3390/mca28030070
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pollicott M
- 通讯作者:Pollicott M
Zeta functions in higher Teichmüller theory
高等 Teichmüller 理论中的 Zeta 函数
- DOI:10.1007/s00209-024-03437-4
- 发表时间:2024
- 期刊:
- 影响因子:0.8
- 作者:Pollicott M
- 通讯作者:Pollicott M
An infinite interval version of the a-Kakutani equidistribution problem
a-Kakutani 等分布问题的无限区间版本
- DOI:10.1007/s11856-023-2569-6
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Pollicott M
- 通讯作者:Pollicott M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Pollicott其他文献
Some remarks on the dynamics of the Mixmaster universe
- DOI:
10.1007/bf02970868 - 发表时间:
2004-09-01 - 期刊:
- 影响因子:2.100
- 作者:
Mark Pollicott;Howard Weiss - 通讯作者:
Howard Weiss
A note on uniform distribution for primes and closed orbits
- DOI:
10.1007/bf02801995 - 发表时间:
1986-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Mark Pollicott - 通讯作者:
Mark Pollicott
How Smooth is Your Wavelet? Wavelet Regularity via Thermodynamic Formalism
- DOI:
10.1007/s00220-008-0457-x - 发表时间:
2008-05-06 - 期刊:
- 影响因子:2.600
- 作者:
Mark Pollicott;Howard Weiss - 通讯作者:
Howard Weiss
One-dimensional maps via complex analysis in several variables
- DOI:
10.1007/bf02761654 - 发表时间:
1995-10-01 - 期刊:
- 影响因子:0.800
- 作者:
Mark Pollicott - 通讯作者:
Mark Pollicott
Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature
- DOI:
10.1007/bf01232242 - 发表时间:
1994-12-01 - 期刊:
- 影响因子:3.600
- 作者:
Mark Pollicott;Richard Sharp - 通讯作者:
Richard Sharp
Mark Pollicott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Pollicott', 18)}}的其他基金
Transfer operators and emergent dynamics in hyperbolic systems
双曲系统中的传递算子和涌现动力学
- 批准号:
EP/V053663/1 - 财政年份:2021
- 资助金额:
$ 51.62万 - 项目类别:
Research Grant
Dynamical zeta functions and resonances for infinite area surfaces
无限面积表面的动态 zeta 函数和共振
- 批准号:
EP/T001674/1 - 财政年份:2019
- 资助金额:
$ 51.62万 - 项目类别:
Research Grant
Applications of ergodic theory to geometry: Dynamical Zeta Functions and their applications
遍历理论在几何中的应用:动态 Zeta 函数及其应用
- 批准号:
EP/M001903/1 - 财政年份:2014
- 资助金额:
$ 51.62万 - 项目类别:
Fellowship
A transfer operator approach to Maass cusp forms and the Selberg zeta function
Maass 尖点形式和 Selberg zeta 函数的传递算子方法
- 批准号:
EP/K000799/1 - 财政年份:2013
- 资助金额:
$ 51.62万 - 项目类别:
Research Grant
Thermodynamic formalism and flows on moduli space
热力学形式主义和模空间上的流动
- 批准号:
EP/J013560/1 - 财政年份:2012
- 资助金额:
$ 51.62万 - 项目类别:
Research Grant
Warwick Symposium on Ergodic Theory and Dynamical Systems (ETDS) 2010-2011
沃里克历经理论和动力系统研讨会 (ETDS) 2010-2011
- 批准号:
EP/H022171/1 - 财政年份:2010
- 资助金额:
$ 51.62万 - 项目类别:
Research Grant
Maximizing measures in hyperbolic dynamics
双曲动力学测度最大化
- 批准号:
EP/E020801/1 - 财政年份:2007
- 资助金额:
$ 51.62万 - 项目类别:
Research Grant
A Taught Course Centre for the Mathematical Sciences based at Oxford, Warwick, Imperial, Bath & Bristol
位于牛津、沃里克、帝国理工、巴斯的数学科学教学课程中心
- 批准号:
EP/E501966/1 - 财政年份:2007
- 资助金额:
$ 51.62万 - 项目类别:
Training Grant
相似海外基金
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 51.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CFTSPEC: Spectra of Conformal Theories: From Trajectories, Colliders, and Numerics
CFTSPEC:共形理论谱:来自轨迹、碰撞器和数值
- 批准号:
EP/X042618/1 - 财政年份:2023
- 资助金额:
$ 51.62万 - 项目类别:
Research Grant
Conference: Stochastic Control for Financial Engineering: Methods and Numerics
会议:金融工程的随机控制:方法和数值
- 批准号:
2304414 - 财政年份:2023
- 资助金额:
$ 51.62万 - 项目类别:
Standard Grant
Stochastic Numerics for Sampling on Manifolds
用于流形采样的随机数值
- 批准号:
EP/X022617/1 - 财政年份:2023
- 资助金额:
$ 51.62万 - 项目类别:
Research Grant
Numerics and Mathematical Analysis for micro-phase separated patterns of polymer nanoparticles
聚合物纳米颗粒微相分离模式的数值和数学分析
- 批准号:
23K03209 - 财政年份:2023
- 资助金额:
$ 51.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamical Systems: Modelling, Analysis, and Numerics
动力系统:建模、分析和数值
- 批准号:
RGPIN-2020-03954 - 财政年份:2022
- 资助金额:
$ 51.62万 - 项目类别:
Discovery Grants Program - Individual
Rigorously Verified Numerics for High Dimensional Dynamics
经过严格验证的高维动力学数值
- 批准号:
RGPIN-2018-04834 - 财政年份:2022
- 资助金额:
$ 51.62万 - 项目类别:
Discovery Grants Program - Individual
Numerics for quantum gravity effects in black holes
黑洞中量子引力效应的数值
- 批准号:
561804-2021 - 财政年份:2021
- 资助金额:
$ 51.62万 - 项目类别:
University Undergraduate Student Research Awards
Dynamical Systems: Modelling, Analysis, and Numerics
动力系统:建模、分析和数值
- 批准号:
RGPIN-2020-03954 - 财政年份:2021
- 资助金额:
$ 51.62万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Understanding the Turbulent Dynamics of Convective Bursts and Tropical Cyclone Intensification Using Large Eddy Simulations and High-Order Numerics
合作研究:利用大涡模拟和高阶数值了解对流爆发和热带气旋增强的湍流动力学
- 批准号:
2121366 - 财政年份:2021
- 资助金额:
$ 51.62万 - 项目类别:
Standard Grant