Partial groups and maps between p-completed classifying spaces

p-完备分类空间之间的部分群和映射

基本信息

  • 批准号:
    EP/J014524/1
  • 负责人:
  • 金额:
    $ 2.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

One of the most fundamental questions one can ask in any mathematical discipline is, given two objects of a similar nature, what is the set of all maps between them, at least up to some equivalence relation. In homotopy theory, for instance, once can ask specifically, given two topological spaces, what is the set of all homotopy classes of maps between them. Similarly, in group theory the question becomes, given two groups G and H, what is the set of all homomorphisms, or representations between them. The theory of p-local finite groups sits squarely in the intersection between homotopy theory and group theory. It was introduced by Broto, Oliver and the PI in the early 2000's with the aim to create a unified framework in which the p-local homotopy theory of classifying spaces of finite group can be studied and generalised. They obtained a number of fundamental results, and created a field of study which attracted significant attention among mathematicians working both in group and representation theory, and in algebraic topology. In particular the setup of p-local groups enabled them to obtain an algebraic classification of the group of all homotopy classes of self homotopy equivalences of a classifying space of a p-local finite group. This, along with numerous other successes in the subject, raised the expectation that p-local group theory will become instrumental in understanding homotopy classes of more general maps between classifying spaces. To date however, all attempts to reach this goal have failed. A p-local finite group consists of three bits of data, a finite p-group S, and two categories, F and L. The category F called a saturated fusion system over S, has subgroups of S as its objects and homomorphisms between them as morphisms, such that certain axioms are satisfied. Such categories arise naturally in group theory and modular representation theory. The category L, called a centric linking systems associated to F, is in a precise sense an enrichment of F which allows one to associate a topologically meaningful classifying space with F. Broto, Oliver and the PI developed an obstruction theory to the existence and uniqueness of a centric linking system associated to a given fusion system F, but were not able to show that such linking systems do exist, and indeed are unique if they do. Chermak (the VR) recently introduced a further abstraction of the concept of a linking system which he named partial groups, or more specifically localities. A careful study of these objects allowed him to deliver a spectacular positive solution to the existence/uniqueness problem.Partial groups, unlike linking systems, come equipped with a very natural concept of morphisms between them. The further refinement - localities - on the other hand still do not possess a good concept of morphisms between them, but there are several natural ideas which deserve serious consideration. It is the close relationship between localities and p-local finite groups which suggest that revisiting the theory from this perspective may give information about mapping spaces between classifying spaces of p-local groups. This project is aimed at a careful study of localities, morphisms between them, and the interaction with linking systems/p-local groups, in order to gain insight into the question of how to classify maps or homotopy classes of maps between their classifying spaces.
在任何数学学科中,人们可以问的最基本的问题之一是,给定两个性质相似的对象,它们之间的所有映射的集合是什么,至少达到某种等价关系。例如,在同伦理论中,人们可以明确地问,给定两个拓扑空间,它们之间的所有同伦映射类的集合是什么。类似地,在群论中,问题变成,给定两个群G和H,它们之间的所有同态或表示的集合是什么。p-局部有限群的理论正好处于同伦理论和群论的交叉点上。它是由Broto,奥利弗和PI在2000年初引入的,目的是创建一个统一的框架,在这个框架中,可以研究和推广有限群空间的p-局部同伦理论。他们取得了一些基本成果,并创造了一个研究领域,吸引了显着的注意数学家之间的工作都在组和代表性理论,并在代数拓扑。特别是设置的p-本地群体使他们能够获得代数分类的所有同伦类的自同伦等价的一个分类空间的p-本地有限群。这一点,沿着许多其他成功的主题,提出了期望,p-本地组理论将成为有助于理解同伦类更一般的地图之间的分类空间。然而,迄今为止,为实现这一目标所做的一切努力都失败了。一个p-局部有限群由三个数据位、一个有限p-群S和两个范畴F和L组成。范畴F称为S上的饱和融合系统,它以S的子群为对象,以子群之间的同态为态射,使得满足某些公理。这样的范畴在群论和模表示论中自然出现。范畴L,称为与F相关联的中心联结系统,在精确意义上是F的一种充实,它允许人们将一个拓扑上有意义的分类空间与F相关联。Broto、奥利弗和PI提出了一种阻碍理论,证明与给定融合系统F相关的中心连接系统的存在性和唯一性,但无法证明此类连接系统确实存在,而且如果存在的话,确实是唯一的。Chermak(VR)最近引入了链接系统概念的进一步抽象,他将其命名为部分群,或者更具体地说是局部性。仔细研究这些对象使他能够提供一个壮观的积极解决的存在/唯一性问题。部分群体,不像链接系统,配备了一个非常自然的概念,它们之间的态射。另一方面,进一步的细化-局部性-仍然没有一个很好的概念,它们之间的态射,但有几个自然的想法,值得认真考虑。局部性与p-局部有限群之间的密切关系表明,从这个角度重新审视该理论可能会给出p-局部群的分类空间之间的映射空间的信息。该项目旨在仔细研究局部性,它们之间的态射,以及与链接系统/p-局部群的相互作用,以深入了解如何在其分类空间之间对映射或映射的同伦类进行分类的问题。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Existence and uniqueness of classifying spaces for fusion systems over discrete p -toral groups
离散p-toral群上融合系统分类空间的存在性和唯一性
An algebraic model for finite loop spaces
有限循环空间的代数模型
Automorphisms of p-local compact groups
p-局部紧群的自同构
  • DOI:
    10.1016/j.jalgebra.2016.07.033
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    González A
  • 通讯作者:
    González A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ran Levi其他文献

Efficiency and reliability in biological neural network architectures
生物神经网络架构的效率和可靠性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniela Egas Santander;Christoph Pokorny;András Ecker;J. Lazovskis;Matteo Santoro;Jason P. Smith;Kathryn Hess;Ran Levi;Michael W. Reimann
  • 通讯作者:
    Michael W. Reimann
Heterogeneous and higher-order cortical connectivity undergirds efficient, robust, and reliable neural codes
异质且高阶的皮层连通性支撑着高效、稳健且可靠的神经编码。
  • DOI:
    10.1016/j.isci.2024.111585
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    4.100
  • 作者:
    Daniela Egas Santander;Christoph Pokorny;András Ecker;Jānis Lazovskis;Matteo Santoro;Jason P. Smith;Kathryn Hess;Ran Levi;Michael W. Reimann
  • 通讯作者:
    Michael W. Reimann

Ran Levi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ran Levi', 18)}}的其他基金

Topological Analysis of Neural Systems
神经系统的拓扑分析
  • 批准号:
    EP/P025072/1
  • 财政年份:
    2017
  • 资助金额:
    $ 2.86万
  • 项目类别:
    Research Grant
Unstable Adams Operations on p-local compact groups
p-局部紧群上的不稳定 Adams 运算
  • 批准号:
    EP/I019073/1
  • 财政年份:
    2011
  • 资助金额:
    $ 2.86万
  • 项目类别:
    Research Grant

相似海外基金

Developing a nonpharmacological pain intervention for community dwelling older adults with dementia
为社区居住的痴呆症老年人开发非药物疼痛干预措施
  • 批准号:
    10644490
  • 财政年份:
    2023
  • 资助金额:
    $ 2.86万
  • 项目类别:
Use of sentiment analysis in SMS and social media to understand HIV prevention needs among young women in Kenya
利用短信和社交媒体中的情绪分析来了解肯尼亚年轻女性的艾滋病毒预防需求
  • 批准号:
    10761910
  • 财政年份:
    2023
  • 资助金额:
    $ 2.86万
  • 项目类别:
Improving Recruitment, Engagement, and Access for Community Health Equity for BRAIN Next-Generation Human Neuroimaging Research and Beyond (REACH for BRAIN)
改善 BRAIN 下一代人类神经影像研究及其他领域的社区健康公平的招募、参与和获取 (REACH for BRAIN)
  • 批准号:
    10730955
  • 财政年份:
    2023
  • 资助金额:
    $ 2.86万
  • 项目类别:
Leveraging Hispanic/Latino diversity to map and characterize cardiovascular disease loci
利用西班牙裔/拉丁裔多样性来绘制和描述心血管疾病基因座
  • 批准号:
    10587581
  • 财政年份:
    2023
  • 资助金额:
    $ 2.86万
  • 项目类别:
Sustainability determinants of an intervention to identify clinical deterioration and improve childhood cancer survival in low-resource hospitals
在资源匮乏的医院中识别临床恶化并提高儿童癌症生存率的干预措施的可持续性决定因素
  • 批准号:
    10562780
  • 财政年份:
    2023
  • 资助金额:
    $ 2.86万
  • 项目类别:
Implementing a patient navigation intervention across a health system to address treatment entry inequities
在整个卫生系统中实施患者导航干预,以解决治疗进入不平等问题
  • 批准号:
    10812628
  • 财政年份:
    2023
  • 资助金额:
    $ 2.86万
  • 项目类别:
Adaptable Community-Engaged Intervention for Violence Prevention: Michigan Model
适应性强的社区参与暴力预防干预措施:密歇根模式
  • 批准号:
    10812130
  • 财政年份:
    2023
  • 资助金额:
    $ 2.86万
  • 项目类别:
Mobile Health and Oral Testing to Optimize Tuberculosis Contact Tracing in Colombia
移动健康和口腔测试可优化哥伦比亚的结核病接触者追踪
  • 批准号:
    10667885
  • 财政年份:
    2023
  • 资助金额:
    $ 2.86万
  • 项目类别:
Identifying and modeling immune correlates of protection against congenital CMV transmission after primary maternal infection
原发性母体感染后预防先天性巨细胞病毒传播的免疫相关性的识别和建模
  • 批准号:
    10677439
  • 财政年份:
    2023
  • 资助金额:
    $ 2.86万
  • 项目类别:
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
  • 批准号:
    10644112
  • 财政年份:
    2023
  • 资助金额:
    $ 2.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了