Molecular quantum devices
分子量子器件
基本信息
- 批准号:EP/J015067/1
- 负责人:
- 金额:$ 153.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Whenever a fundamental new principle of science is discovered, the chances are that sooner or later a way will be found to use it for a new technology. The quantum mechanical principles of superposition and entanglement, identified back in the 1930s, are now understood to offer spectacular potential for technological applications. Superposition describes how an object can be in two states at once, as it were 'here' and 'there' at the same time. Two or more objects in superposition states can be entangled, so that measurements on each of them are correlated in a way that goes beyond anything we would expect from everyday intuition. Exploiting these effects in practical devices would provide new capabilities for fields such as molecular light harvesting and for molecular quantum technologies such as sensors, simulators, and quantum computers.Successful laboratory experiments have shown that molecules of various kinds can exhibit these crucial quantum properties. Molecules are composed of electrons and atomic cores or 'nuclei'. Both electrons and nuclei can have a property called spin associated with them that makes them behave like tiny bar magnets. We have confirmed that electron and nuclear spins can be put into superpositions or entangled, and they can last for a long time in that condition. Most of the experiments so far have been in small test tubes. The crucial step now is to implement the same effects in nanometre scale electrical devices, such as single electron transistors consisting of single sheets of carbon rolled up as nanotubes or flat as sheets of graphene. By making hybrid technologies that combine molecules with nanoelectronics, we will lay the foundation for scaling up to more complex systems.At this very small size, different atoms or molecules in different places affect the behaviour of the device. A breakthrough in the past few years enables us to see the positions of individual atoms in the materials which we want to use in our devices. The technique is aberration-corrected electron microscopy, and provided the electrons are not too energetic it is possible to look at the structures which we have made without damaging them. In this way we shall be able to relate the device performance to the atomic resolution microscopy of the component materials.To take this quantum nanotechnology from engineering to application is extremely challenging, and lies at the limit of what is realistically feasible. It needs a team with a remarkable combination of expertise, who know how to collaborate across scientific fields. We must:1. design the devices which we shall build, based on a deep understanding of how to control their quantum states;2. produce the materials which we need, such as molecules with suitable spin states with carbon nanotubes and graphene for electrical substrates;3. make nanoscale devices and examine them in a microscope to see where the individual atoms and molecules are;4. perform the experiments to develop the quantum control and measurement for the effects which we aim to exploit;5. undertake theoretical modelling to understand the electron behaviour and to design new materials systems for improved performance.We are fortunate in having the right people and facilities to do this. The platform grant will sustain a team which brings together all the relevant skills. Together we shall make progress towards the emerging quantum technologies that will implement the deep resources of quantum mechanics in working solid state devices.
每当一个基本的新科学原理被发现时,很可能迟早会找到一种方法将其用于新技术。早在20世纪30年代就发现的叠加和纠缠的量子力学原理,现在被认为为技术应用提供了惊人的潜力。叠加描述了一个物体如何同时处于两种状态,就像它同时处于“这里”和“那里”一样。两个或更多处于叠加态的物体可以纠缠在一起,因此对它们中每一个的测量都以一种超越我们日常直觉的方式相关联。在实际设备中利用这些效应将为诸如分子光捕获和诸如传感器、模拟器和量子计算机等分子量子技术提供新的能力。成功的实验室实验已经表明,各种分子都可以表现出这些关键的量子特性。分子由电子和原子核组成。电子和原子核都有一种叫做自旋的性质,这种性质使它们的行为像微小的条形磁铁。我们已经证实,电子和核自旋可以叠加或纠缠,并且它们可以在这种条件下持续很长时间。到目前为止,大多数实验都是在小试管中进行的。现在关键的一步是在纳米尺度的电子器件中实现同样的效果,例如单电子晶体管,它由单层碳纳米管或石墨烯组成。通过制造联合收割机将分子与纳米电子学相结合的混合技术,我们将为按比例放大到更复杂的系统奠定基础。在这种非常小的尺寸下,不同位置的不同原子或分子会影响设备的行为。过去几年的一项突破使我们能够看到我们想要在设备中使用的材料中单个原子的位置。这项技术是像差校正电子显微镜,只要电子能量不太高,就有可能在不损坏它们的情况下观察我们所做的结构。通过这种方式,我们将能够将器件性能与组件材料的原子分辨率显微镜相关联。将这种量子纳米技术从工程应用到应用是极具挑战性的,并且处于现实可行性的极限。它需要一个拥有出色专业知识组合的团队,他们知道如何在科学领域进行合作。我们必须:1.设计我们将要建造的设备,基于对如何控制它们的量子态的深刻理解;2.用碳纳米管和石墨烯制造我们需要的材料,例如具有合适自旋态的分子,用于电子衬底;3.制作纳米级的器件,并在显微镜下观察它们,以观察单个原子和分子的位置;4.进行实验,以发展我们旨在利用的效应的量子控制和测量;5.进行理论建模,以了解电子行为,并设计新的材料系统,以提高性能。我们很幸运,有合适的人员和设施来做这件事。平台赠款将维持一个汇集所有相关技能的团队。我们将一起朝着新兴的量子技术取得进展,这些技术将在工作的固态设备中实现量子力学的深层资源。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensitive Radio-Frequency Measurements of a Quantum Dot by Tuning to Perfect Impedance Matching
- DOI:10.1103/physrevapplied.5.034011
- 发表时间:2016-03-24
- 期刊:
- 影响因子:4.6
- 作者:Ares, N.;Schupp, F. J.;Laird, E. A.
- 通讯作者:Laird, E. A.
Amplified transduction of Planck-scale effects using quantum optics
- DOI:10.1103/physreva.96.023849
- 发表时间:2017-08-23
- 期刊:
- 影响因子:2.9
- 作者:Bosso, Pasquale;Das, Saurya;Vanner, Michael R.
- 通讯作者:Vanner, Michael R.
Optically enhanced charge transfer between C60 and single-wall carbon nanotubes in hybrid electronic devices.
- DOI:10.1039/c3nr04314b
- 发表时间:2014-01
- 期刊:
- 影响因子:6.7
- 作者:C. Allen;Guoquan Liu;Yabin Chen;A. Robertson;Kuang He;Kyriakos Porfyrakis;Jin Zhang;G. Briggs;J. Warner
- 通讯作者:C. Allen;Guoquan Liu;Yabin Chen;A. Robertson;Kuang He;Kyriakos Porfyrakis;Jin Zhang;G. Briggs;J. Warner
Identification of a positive-Seebeck-coefficient exohedral fullerene.
正塞贝克系数外面富勒烯的鉴定。
- DOI:10.1039/c6nr02291j
- 发表时间:2016
- 期刊:
- 影响因子:6.7
- 作者:Almutlaq N
- 通讯作者:Almutlaq N
Quantum dynamics in a tiered non-Markovian environment
- DOI:10.1088/1367-2630/17/2/023063
- 发表时间:2015-02-24
- 期刊:
- 影响因子:3.3
- 作者:Fruchtman, Amir;Lovett, Brendon W.;Gauger, Erik M.
- 通讯作者:Gauger, Erik M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Briggs其他文献
Reply to letter by Heaton
- DOI:
10.1093/ajcn/32.12.2374 - 发表时间:
1979-12-01 - 期刊:
- 影响因子:
- 作者:
Gene A Spiller;George Briggs - 通讯作者:
George Briggs
George Briggs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Briggs', 18)}}的其他基金
From Nanoscale Structure to Nanoscale Function (NS2NF)
从纳米级结构到纳米级功能(NS2NF)
- 批准号:
EP/R029229/1 - 财政年份:2018
- 资助金额:
$ 153.89万 - 项目类别:
Research Grant
Quantum Technology Capital: An extensible simulation and test platform for quantum and quantum enabled technologies
量子技术资本:量子和量子技术的可扩展模拟和测试平台
- 批准号:
EP/N014995/1 - 财政年份:2016
- 资助金额:
$ 153.89万 - 项目类别:
Research Grant
Putting spin into carbon nanoelectronics
将自旋融入碳纳米电子学
- 批准号:
EP/H001972/1 - 财政年份:2010
- 资助金额:
$ 153.89万 - 项目类别:
Research Grant
NSF: Templated Ordered Endohedral Fullerenes as Building Blocks for Quantum Computing
NSF:模板化有序内面富勒烯作为量子计算的构建模块
- 批准号:
EP/F028806/1 - 财政年份:2008
- 资助金额:
$ 153.89万 - 项目类别:
Research Grant
Resubmission of IMPRESS: Intra-Molecular Propagation of Electron Spin States
重新提交 IMPRESS:电子自旋态的分子内传播
- 批准号:
EP/D074398/1 - 财政年份:2007
- 资助金额:
$ 153.89万 - 项目类别:
Research Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
- 批准号:50906055
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
广义Besov函数类上的几个逼近特征
- 批准号:10926056
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
- 批准号:30772507
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
驻波场驱动的量子相干效应的研究
- 批准号:10774058
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
半导体物理中的非线性偏微分方程组
- 批准号:10541001
- 批准年份:2005
- 资助金额:4.0 万元
- 项目类别:专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
- 批准号:30570686
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Light-guide Image Processing (LIP) 3D printed snapshot spectrometer for molecular imaging
用于分子成像的光导图像处理 (LIP) 3D 打印快照光谱仪
- 批准号:
10447267 - 财政年份:2022
- 资助金额:
$ 153.89万 - 项目类别:
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2022
- 资助金额:
$ 153.89万 - 项目类别:
Discovery Grants Program - Individual
Light-guide Image Processing (LIP) 3D printed snapshot spectrometer for molecular imaging
用于分子成像的光导图像处理 (LIP) 3D 打印快照光谱仪
- 批准号:
10613348 - 财政年份:2022
- 资助金额:
$ 153.89万 - 项目类别:
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2021
- 资助金额:
$ 153.89万 - 项目类别:
Discovery Grants Program - Individual
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2020
- 资助金额:
$ 153.89万 - 项目类别:
Discovery Grants Program - Individual
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2019
- 资助金额:
$ 153.89万 - 项目类别:
Discovery Grants Program - Individual
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2018
- 资助金额:
$ 153.89万 - 项目类别:
Discovery Grants Program - Individual
Fluorescence-based molecular imaging of in vivo release kinetics
基于荧光的体内释放动力学分子成像
- 批准号:
9429542 - 财政年份:2017
- 资助金额:
$ 153.89万 - 项目类别:
Quantum Software for Simulation of molecular systems on NISQ devices
用于在 NISQ 设备上模拟分子系统的量子软件
- 批准号:
1918352 - 财政年份:2017
- 资助金额:
$ 153.89万 - 项目类别:
Studentship
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
436213-2013 - 财政年份:2017
- 资助金额:
$ 153.89万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




