NSF: Templated Ordered Endohedral Fullerenes as Building Blocks for Quantum Computing

NSF:模板化有序内面富勒烯作为量子计算的构建模块

基本信息

  • 批准号:
    EP/F028806/1
  • 负责人:
  • 金额:
    $ 94.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2008
  • 资助国家:
    英国
  • 起止时间:
    2008 至 无数据
  • 项目状态:
    已结题

项目摘要

Composite materials consisting of nanoparticles incorporated within organic matrices offer a diverse range of possible applications, from toughened polymers to cosmetics and sun screens. The inherent ability of some organic materials to self-assemble into larger structures, in particular block copolymers, can be used to achieve well-defined and tuneable morphologies. We intend to exploit this control to achieve hierarchical ordering of endohedral fullerene species within an organic matrix. If the embedded nanostructures have sufficiently well-defined and robust quantum properties, they may be capable of storing and processing quantum information, thus offering the prospect of outperforming classical computation at a fundamental level. The implementation of a basic quantum logic gate in our structures will require control of the interactions between fullerenes, which in turn depend on their alignment within the organic matrix, and thus serves as a demanding test of the success of our project. We propose to achieve controlled alignment of spin-active fullerene species with well defined morphologies, by exploiting self-assembly in organic matrices, within the general context of controlling the hierarchical morphology of polymer nanocomposites. To achieve this, we shall use block copolymers, cyclodextrins and calixarenes. Block copolymers have well-defined nanophase behaviour which has already led to their use in fabricating nanopatterns by lithographic templates. They are also being investigated as systems capable of ordering nanoparticulate inclusions. To achieve controlled alignment of the fullerenes, it is essential that they become fully integrated into the self-assembled structure of the matrix material. We shall follow two approaches: the first is engineering a segregation of the fullerenes into a defined phase, as are often present in block copolymers. The second is to encapsulate fullerene dimers within smaller organic units such as bis-cyclodextrins and bis-calixarenes, which subsequently self-assemble into ordered structures. We shall use a range of techniques to evaluate the development of these techniques, including nuclear magnetic resonance (NMR) and low-voltage (LV) and high resolution (HR) transmission electron microscopy (TEM), and electron spin resonance (ESR) of spin active fullerene dimer molecules acting as alignment probes. Once our alignment strategy has been optimised, we shall demonstrate the exquisite control we have achieved in the resulting nanocomposite by using it to show coherent manipulation of interacting spin systems. The electron spin within certain endohedral fullerenes is an ideal manifestation of quantum information, due to its extremely robust nature and ability to be accurately manipulated. The dipolar interaction between such spins can then be exploited to demonstrate fundamental concepts such as entanglement, and a controlled-NOT operation between spins. Such an interaction is dependent on the orientation of the spin pair with respect to an applied external field. Using an asymmetric fullerene dimer with an individually addressable electron spin trapped in each fullerene unit, we shall have full control over a system of two coupled electron/nuclear spin pairs, capable of embodying up to four or more quantum bits (qubits). We intend to demonstrate quantum entanglement between the electron spins, and consequently a simple quantum computation such as the Deutsch-Josza algorithm. Finally, we shall attempt the same demonstration with the longer lived nuclear spins, in this case using the electron spins to distribute the entanglement. This ambitious experiment places strong demands on our ability to fabricate oriented arrays of functional nanocomposites, and thus forms a compelling demonstration of our new technology.
由有机基质中加入的纳米颗粒组成的复合材料提供了从增韧聚合物到化妆品和防晒霜的各种可能的应用。一些有机材料固有的自组装成更大结构的能力,特别是嵌段共聚物,可以用来实现定义良好和可调的形态。我们打算利用这种控制来实现有机基质中面内富勒烯物种的分级排序。如果嵌入的纳米结构具有足够好的定义和强大的量子特性,它们可能能够存储和处理量子信息,从而在基本水平上超越经典计算。在我们的结构中实现基本的量子逻辑门将需要控制富勒烯之间的相互作用,而富勒烯之间的相互作用又取决于它们在有机基质中的排列,因此是对我们项目成功的严格测试。我们建议在控制聚合物纳米复合材料的分级形态的一般背景下,通过在有机基质中的自组装来实现具有良好定义的形态的自旋活性富勒烯物种的受控排列。为了实现这一点,我们将使用嵌段共聚物、环糊精和杯芳烃。嵌段共聚物具有良好的纳米相行为,这使得它们已经被用于通过光刻模板来制造纳米颗粒。它们也被作为能够排列纳米颗粒夹杂物的系统进行研究。为了实现富勒烯的受控对准,它们必须完全整合到基质材料的自组装结构中。我们将遵循两种方法:第一种方法是将富勒烯分离成特定的相,就像嵌段共聚物中经常出现的那样。第二种是将富勒烯二聚体包裹在较小的有机单元中,如双环糊精和双杯芳烃,这些单元随后自组装成有序结构。我们将使用一系列技术来评估这些技术的发展,包括核磁共振(核磁共振)、低电压(LV)和高分辨率(HR)电子显微镜(TEM),以及用作取向探针的自旋活性富勒烯二聚体分子的电子自旋共振(ESR)。一旦我们的对准策略被优化,我们将通过使用它来展示对相互作用的自旋系统的相干操纵,从而展示我们在所产生的纳米复合材料中所实现的精细控制。某些面内富勒烯中的电子自旋是量子信息的理想表现形式,因为它具有极其健壮的性质和精确操纵的能力。然后可以利用这种自旋之间的偶极相互作用来演示基本概念,如纠缠和自旋之间的受控非操作。这种相互作用取决于自旋对相对于外加电场的取向。使用一个不对称的富勒烯二聚体,在每个富勒烯单元中捕获一个可单独寻址的电子自旋,我们将完全控制一个由两个耦合的电子/核自旋对组成的系统,能够包含多达四个或更多的量子比特(量子比特)。我们打算演示电子自旋之间的量子纠缠,从而证明一个简单的量子计算,如Deutsch-Josza算法。最后,我们将尝试用寿命更长的核自旋进行同样的演示,在这种情况下,使用电子自旋来分配纠缠。这项雄心勃勃的实验对我们制造定向纳米复合材料阵列的能力提出了强烈的要求,从而形成了我们新技术的令人信服的演示。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shear alignment of fullerenes in nanotubular supramolecular complexes
纳米管超分子复合物中富勒烯的剪切排列
  • DOI:
    10.1016/j.polymer.2014.11.058
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Kincer M
  • 通讯作者:
    Kincer M
Investigations of N@C 60 and N@C 70 stability under high pressure and high temperature conditions
N@C 60 和 N@C 70 在高压和高温条件下的稳定性研究
  • DOI:
    10.1002/pssb.200982270
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iwasiewicz-Wabnig A
  • 通讯作者:
    Iwasiewicz-Wabnig A
Photostability of N@C 60 in Common Solvents
N@C 60 在普通溶剂中的光稳定性
  • DOI:
    10.1149/1.3655517
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Farrington B
  • 通讯作者:
    Farrington B
Photochemical stability of N@C60 and its pyrrolidine derivatives
N@C60及其吡咯烷衍生物的光化学稳定性
  • DOI:
    10.1016/j.cplett.2011.04.039
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Liu G
  • 通讯作者:
    Liu G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Briggs其他文献

Reply to letter by Heaton
  • DOI:
    10.1093/ajcn/32.12.2374
  • 发表时间:
    1979-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gene A Spiller;George Briggs
  • 通讯作者:
    George Briggs

George Briggs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Briggs', 18)}}的其他基金

From Nanoscale Structure to Nanoscale Function (NS2NF)
从纳米级结构到纳米级功能(NS2NF)
  • 批准号:
    EP/R029229/1
  • 财政年份:
    2018
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Research Grant
Quantum Technology Capital: An extensible simulation and test platform for quantum and quantum enabled technologies
量子技术资本:量子和量子技术的可扩展模拟和测试平台
  • 批准号:
    EP/N014995/1
  • 财政年份:
    2016
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Research Grant
Molecular quantum devices
分子量子器件
  • 批准号:
    EP/J015067/1
  • 财政年份:
    2013
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Research Grant
Putting spin into carbon nanoelectronics
将自旋融入碳纳米电子学
  • 批准号:
    EP/H001972/1
  • 财政年份:
    2010
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Research Grant
Resubmission of IMPRESS: Intra-Molecular Propagation of Electron Spin States
重新提交 IMPRESS:电子自旋态的分子内传播
  • 批准号:
    EP/D074398/1
  • 财政年份:
    2007
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322900
  • 财政年份:
    2024
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Standard Grant
CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
  • 批准号:
    2337740
  • 财政年份:
    2024
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322899
  • 财政年份:
    2024
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Standard Grant
Single molecule oligopeptide fingerprinting based on templated self-assembly of oligonucleotide structures
基于寡核苷酸结构模板化自组装的单分子寡肽指纹识别
  • 批准号:
    10838153
  • 财政年份:
    2023
  • 资助金额:
    $ 94.58万
  • 项目类别:
Structural insights into RNA promoters for RNA polymerase II-catalyzed RNA-templated transcription
RNA 聚合酶 II 催化 RNA 模板转录的 RNA 启动子的结构见解
  • 批准号:
    2350392
  • 财政年份:
    2023
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Continuing Grant
Rapid and efficient generation of sequence variants by templated synthesis
通过模板合成快速有效地生成序列变体
  • 批准号:
    10726976
  • 财政年份:
    2023
  • 资助金额:
    $ 94.58万
  • 项目类别:
Sacrificial templated grafts to encourage bone healing through mechanotransduction
牺牲模板移植物通过机械传导促进骨愈合
  • 批准号:
    10811305
  • 财政年份:
    2023
  • 资助金额:
    $ 94.58万
  • 项目类别:
A high-throughput spheroid fusion platform for the templated-assembly of 3D neuromuscular junctions
用于 3D 神经肌肉接头模板组装的高通量球体融合平台
  • 批准号:
    NC/X002187/1
  • 财政年份:
    2023
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Research Grant
Development of multistep DNA-templated synthesis using strand break
使用链断裂开发多步 DNA 模板合成
  • 批准号:
    23K06063
  • 财政年份:
    2023
  • 资助金额:
    $ 94.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The molecular determinants of surface-templated self-association of intrinsically disordered proteins
本质无序蛋白质表面模板自缔合的分子决定因素
  • 批准号:
    10715794
  • 财政年份:
    2023
  • 资助金额:
    $ 94.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了