Controlling the self-assembly of Small Heat-Shock Protein inspired nano-cages
控制小型热激蛋白纳米笼的自组装
基本信息
- 批准号:EP/J01835X/1
- 负责人:
- 金额:$ 39.87万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the frontier challenges in science is to understand the means by which matter self-assembles into defined and ordered structures. The possibilities stemming from such knowledge, in terms of harnessing and directing the capability of molecules to assemble into specified forms with desirable molecular properties are boundless. Some of the most striking examples of self-assembly are found in biology, where structures of remarkable diversity, complexity and beauty arise through the combination of relatively simple 'building blocks'.It is apparent that the majority of biomolecules, be they lipids, nucleic acids, or proteins, actually exist in assembled multimeric forms, held together by a large number of weak non-covalent interactions. Proteins represent the greatest diversity in such assembled structures, forming structures ranging from highly symmetrical viruses, to asymmetric multi-component machines, and extended filamentous polymers. Remarkably, it appears that often only quite subtle changes in the building blocks, or environmental conditions, are required to adjust the self-assembly pathway, and consequently the multimeric form.With applications in both materials science and medicine, some of the potentially most useful self-assembled biological structures are nano-scale cages. They offer considerable possibilities as miniaturised reaction vessels for chemical and particle synthesis, but perhaps their most exciting application is as transporters for the delivery of biotherapeutics. Cargo could be encapsulated within the cages, and thereby sequestered from the surrounding medium, as the cages themselves are targeted directly at particular cells or tissue. Currently, however, our ability to mimic nature and rationally engineer such 'nano-cages' remains limited. Here we propose a novel strategy to sample the architectural diversity spanned by closely related self-assembling proteins using a novel mass spectrometry based approach. This will enable us to develop a 'tool-box' of nano-cages which can be tailored for particular and varied function.The proteins we will use as a focus for our studies are the widespread Small Heat-Shock Proteins. Even though structures of these oligomeric proteins has been hard to come by it is already apparent that, despite a common modular construction and regions of high sequence similarity, these proteins self-assemble into a range of 'nano-cages' with striking polyhedral architecture. Furthermore, the dynamics of self-assembly and disassembly display similar diversity, and are responsive to subtle changes in solution conditions.We propose to perform a wide survey of the architectural and dynamical diversity of these natural nano-cages, with the aim of pin-pointing the ways in which nature has regulated their self-assembly. Such a survey is enabled by a novel experimental pipeline which exploits the ability for advanced mass spectrometry approaches to rapidly provide information as to the oligomerization, structure, and fluctuations of protein assemblies. By coupling this technology in an automated fashion to high-throughput protein production we will be able to determine the molecular properties of these nano-cages at a rate dramatically faster than by means of traditional approaches.Having assessed the variability that nature has bestowed upon these protein assemblies, how this is achieved on the amino acid level and is regulated by solution conditions, we will engineer novel nano-cages by re-combining structural 'cassettes' selected from our initial screen. In this way we will be able to construct an extensive and diverse library of nano-cages, variable in both architecture and self-assembly and disassembly properties. This, together with our exploration of the possibilities in targeting these cages to specific cell types and to stimulate their disruption with ultra-fast lasers, yields the exciting potential application for delivery of cargo to defined locations in the body.
科学的前沿挑战之一是理解物质自我组装成定义和有序结构的方法。在利用和指导分子组装成具有理想分子特性的特定形式的能力方面,这种知识产生的可能性是无限的。在生物学中,自组装的一些最显著的例子是通过相对简单的"积木"组合而成的,具有显著多样性、复杂性和美丽性的结构。很明显,大多数生物分子,无论是脂质、核酸还是蛋白质,实际上都是以组装的多聚体形式存在的,通过大量弱的非共价相互作用结合在一起。蛋白质在这种组装结构中代表了最大的多样性,形成从高度对称的病毒到不对称的多组分机器和延伸的丝状聚合物的结构。值得注意的是,似乎通常只需要在构建模块或环境条件中进行非常细微的变化就可以调整自组装途径,从而调整多聚体形式。随着材料科学和医学的应用,一些潜在的最有用的自组装生物结构是纳米尺度的笼子。它们为化学和粒子合成提供了相当大的可能性,但也许它们最令人兴奋的应用是作为生物治疗药物的运输工具。货物可以被封装在笼内,从而与周围介质隔离,因为笼本身直接靶向特定的细胞或组织。然而,目前,我们模仿自然并合理设计这种“纳米笼”的能力仍然有限。在这里,我们提出了一种新的策略,使用一种新的基于质谱的方法,采样的建筑多样性跨越密切相关的自组装蛋白质。这将使我们能够开发一个"工具箱"的纳米笼,可以定制为特定的和不同的功能。我们将使用的蛋白质作为我们的研究重点是广泛的小热休克蛋白。尽管这些寡聚蛋白质的结构很难获得,但已经很明显的是,尽管有共同的模块化结构和高序列相似性的区域,这些蛋白质自组装成一系列具有引人注目的多面体结构的“纳米笼”。此外,自组装和拆卸的动态显示类似的多样性,并响应于微妙的变化,解决方案conditions.We建议进行广泛的调查,这些自然的纳米笼的建筑和动态多样性,以针指出的方式,自然调节其自组装的目的。这样的调查是通过一种新的实验管道,利用先进的质谱方法的能力,迅速提供信息的寡聚化,结构和蛋白质组装的波动。通过将这项技术以自动化的方式与高通量蛋白质生产相结合,我们将能够以比传统方法快得多的速度确定这些纳米笼的分子特性。在评估了自然赋予这些蛋白质组装体的可变性之后,这是如何在氨基酸水平上实现的,以及如何通过溶液条件进行调节,我们将通过重新组合从我们的初始筛选中选择的结构'盒'来设计新颖的纳米笼。通过这种方式,我们将能够构建一个广泛而多样的纳米笼库,在架构和自组装和拆卸特性方面都是可变的。这一点,再加上我们探索将这些笼子靶向特定细胞类型并用超快激光刺激其破坏的可能性,产生了将货物运送到体内特定位置的令人兴奋的潜在应用。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A weakened interface in the P182L variant of HSP27 associated with severe Charcot-Marie-Tooth neuropathy causes aberrant binding to interacting proteins.
- DOI:10.15252/embj.2019103811
- 发表时间:2021-04-15
- 期刊:
- 影响因子:0
- 作者:Alderson TR;Adriaenssens E;Asselbergh B;Pritišanac I;Van Lent J;Gastall HY;Wälti MA;Louis JM;Timmerman V;Baldwin AJ;Lp Benesch J
- 通讯作者:Lp Benesch J
Proline isomerization in the C-terminal region of HSP27.
- DOI:10.1007/s12192-017-0791-z
- 发表时间:2017-07
- 期刊:
- 影响因子:3.8
- 作者:Alderson TR;Benesch JLP;Baldwin AJ
- 通讯作者:Baldwin AJ
Native Mass Spectrometry for Structural Biophysics
用于结构生物物理学的天然质谱分析
- DOI:10.1016/j.bpj.2013.11.032
- 发表时间:2014
- 期刊:
- 影响因子:3.4
- 作者:Benesch J
- 通讯作者:Benesch J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Benesch其他文献
Justin Benesch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Benesch', 18)}}的其他基金
Single-molecule proteomics: next-generation analysis of proteins in individual cells
单分子蛋白质组学:单个细胞中蛋白质的下一代分析
- 批准号:
BB/W00349X/1 - 财政年份:2022
- 资助金额:
$ 39.87万 - 项目类别:
Research Grant
Next-generation mass spectrometry of protein structure and interactions
蛋白质结构和相互作用的下一代质谱分析
- 批准号:
EP/W021609/1 - 财政年份:2022
- 资助金额:
$ 39.87万 - 项目类别:
Research Grant
Enabling Ion Mobility Mass Spectrometry for Glycomics
实现糖组学的离子淌度质谱分析
- 批准号:
BB/L017733/1 - 财政年份:2014
- 资助金额:
$ 39.87万 - 项目类别:
Research Grant
Mass spectrometry based structural proteomics
基于质谱的结构蛋白质组学
- 批准号:
BB/K004247/1 - 财政年份:2013
- 资助金额:
$ 39.87万 - 项目类别:
Research Grant
Quaternary Structure and Dynamics of Polydisperse Molecular Chaperone Complexes
多分散分子伴侣配合物的四级结构和动力学
- 批准号:
BB/J018082/1 - 财政年份:2012
- 资助金额:
$ 39.87万 - 项目类别:
Research Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于序贯递药体系实现对非酒精性脂肪肝的高渗给药和长效治疗
- 批准号:32001001
- 批准年份:2020
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
黎曼流形上的特殊几何结构及相关分类研究
- 批准号:11971153
- 批准年份:2019
- 资助金额:53.0 万元
- 项目类别:面上项目
转录因子ZBTB7B在小鼠乳腺发育过程中的功能及机制研究
- 批准号:31900514
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
新型代谢基因特征簇作为乳腺癌干细胞生物标志物及其靶向的研究
- 批准号:31900515
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
微环境中缝隙连接对果蝇神经干细胞自我更新与分化的调控机制
- 批准号:31771510
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
- 批准号:
2411677 - 财政年份:2024
- 资助金额:
$ 39.87万 - 项目类别:
Continuing Grant
Collaborative Research: Controlling Nanoscale Self-Assembly via Binding-Induced Polarization
合作研究:通过结合诱导极化控制纳米级自组装
- 批准号:
2203675 - 财政年份:2022
- 资助金额:
$ 39.87万 - 项目类别:
Standard Grant
Controlling protein self-assembly and stability using biological ions
利用生物离子控制蛋白质自组装和稳定性
- 批准号:
2777806 - 财政年份:2022
- 资助金额:
$ 39.87万 - 项目类别:
Studentship
Collaborative Research: Controlling Nanoscale Self-Assembly via Binding-Induced Polarization
合作研究:通过结合诱导极化控制纳米级自组装
- 批准号:
2203905 - 财政年份:2022
- 资助金额:
$ 39.87万 - 项目类别:
Standard Grant
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
- 批准号:
2045506 - 财政年份:2021
- 资助金额:
$ 39.87万 - 项目类别:
Continuing Grant
CAREER: Controlling Supramolecular Self-Assembly of Planar and Curved Polycyclic Aromatic Systems
职业:控制平面和弯曲多环芳香族体系的超分子自组装
- 批准号:
1807328 - 财政年份:2017
- 资助金额:
$ 39.87万 - 项目类别:
Continuing Grant
FMRP and Pumilio co-regulate synaptogenesis by controlling Neuroglian expression
FMRP 和 Pumilio 通过控制 Neuroglian 表达共同调节突触发生
- 批准号:
9068676 - 财政年份:2015
- 资助金额:
$ 39.87万 - 项目类别:
Controlling photoluminescent properties in the self-assembly of peptidic Au(I)-Metalloamphiphiles through cooperative interactions (B16*)
通过协同相互作用控制肽 Au(I)-金属两亲物自组装的光致发光特性 (B16*)
- 批准号:
251210240 - 财政年份:2014
- 资助金额:
$ 39.87万 - 项目类别:
Collaborative Research Centres
Controlling Self-Assembly in Liquid Crystals
控制液晶的自组装
- 批准号:
465213-2014 - 财政年份:2014
- 资助金额:
$ 39.87万 - 项目类别:
University Undergraduate Student Research Awards
EAGER: Simultaneously Controlling Multi-Scale Material Structures Based on Fluid Layering With Self-Assembly and Eutectic Growth
EAGER:基于自组装和共晶生长的流体分层同时控制多尺度材料结构
- 批准号:
1353156 - 财政年份:2013
- 资助金额:
$ 39.87万 - 项目类别:
Standard Grant














{{item.name}}会员




