DIVA: Data Intensive Visual Analytics - Provenance and Uncertainty in Human Terrain Analysis

DIVA:数据密集型可视化分析 - 人类地形分析中的起源和不确定性

基本信息

  • 批准号:
    EP/J020443/1
  • 负责人:
  • 金额:
    $ 21.96万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Data Intensive Visual Analytics can help address the data deluge by helping decision makers to rapidly reach informed and effective decisions in a range of situations.This exploratory project will apply DIVA to defence and security applications in close collaboration with DSTL. It will investigate visual methods for effectively utilising the kinds of dynamic and uncertain data that are emerging from multiple and frequently conflicting sources. Methods will be developed to store, communicate and use metadata about (potentially conflicting, uncertain and messy) data origins, quality and analytical process. They will be transferable and apply at operational and strategic levels.We draw together a team of UK academics with complimentary expertise. Contributors from Middlesex University and City University London have growing international reputations for developing innovative and applied visual analytics solutions and the theoretical work that supports this activity. Contributors from Loughborough University offer experience of information management and analysis in real time, harsh environments and the military context. The team will work closely to establish and evaluate the potential for DIVA in the area of Human Terrain Analysis.The programme of work is designed to ensure close engagement between academics and DSTL colleagues. Short bursts of concerted activity focusing around a series of participatory design workshops will result in rapid development and evaluation. These intense periods of coordinated co-located activity will stimulate subsequent reflection and respond to feedback involving DSTL in an iterative process. A continuous bridging presence over a 12 month elapsed period (one researcher working at two sites) will support and consolidate this work. These efforts will address critical research issues faced by the emerging academic VA community: * How can we best support analysts with information about data uncertainty and provenance? These factors underlie analytic approaches in data intensive systems yet many issues remain unresolved. * How can we capture, annotate and explain the analytic process? Doing so will enable us to reproduce the analytic process and support communication and collaborative analysis. * How do VA approaches apply in critical applications areas? Close collaboration with DSTL will ensure that academic developments are grounded in and informed by an applications domain that is vital to national security.The planned activity will produce schemas, methods and prototypes that address these questions, support analytical work and demonstrate DIVA potential in the military context.The results are likely to have application impact across MOD and in wider disciplines to which VA is being increasingly applied, including significant data intensive areas in science, industry and government. Findings will be communicated widely through national and international academic conferences, social media, press releases and at DSTL networking events. Software and functionality developed will be made available through a Creative Commons licence. Along with the knowledge derived through the planned research, this will be used by the UK Visual Analytics Community.The project offers significant value, using existing skills, equipment and technology, and has low start-up costs. No recruitment is necessary with all participants employed in dynamic and successful research groups at the three participating institutions: City University London (lead), Middlesex University and Loughborough University. The programme of activity involves 24 months of research time over 12 months elapsed time and fits in well with the schedules and workloads of world class researchers operating in the international arena. All are committed to the work plan, which will contribute to institutional objectives in all cases and is supported by the US National Visual Analytics Centre.
数据密集型可视化分析可以通过帮助决策者在各种情况下快速做出明智和有效的决策来帮助解决数据泛滥问题。这个探索性项目将与DSTL密切合作,将DIVA应用于国防和安全应用。它将研究有效利用各种动态和不确定数据的视觉方法,这些数据来自多个经常相互冲突的来源。将制定方法来存储、交流和使用关于数据来源、质量和分析过程的元数据(可能存在冲突、不确定和混乱)。他们将是可转移的,并在运营和战略层面应用。我们汇集了一个英国学者团队,具有互补的专业知识。米德尔塞克斯大学和伦敦城市大学的贡献者在开发创新和应用视觉分析解决方案以及支持这一活动的理论工作方面享有越来越高的国际声誉。拉夫堡大学的贡献者提供了真实的时间、恶劣环境和军事背景下的信息管理和分析经验。该团队将密切合作,建立和评估DIVA在人类地形分析领域的潜力。工作计划旨在确保学术界和DSTL同事之间的密切合作。围绕一系列参与性设计讲习班开展的短时间的协调一致的活动将导致快速的开发和评估。这些协调的协同活动的紧张时期将刺激随后的反思,并在迭代过程中对涉及DSTL的反馈做出反应。在12个月的时间里,一个连续的桥梁存在(一名研究员在两个地点工作)将支持和巩固这项工作。这些努力将解决新兴的学术VA社区所面临的关键研究问题:* 我们如何才能最好地支持分析师提供有关数据不确定性和出处的信息?这些因素是数据密集型系统中分析方法的基础,但许多问题仍未解决。* 我们如何捕捉、注释和解释分析过程? 这样做将使我们能够重现分析过程,并支持沟通和协作分析。 * VA方法如何应用于关键应用领域?与DSTL的密切合作将确保学术发展立足于对国家安全至关重要的应用领域并获得其信息。计划中的活动将产生解决这些问题的模式,方法和原型,支持分析工作并展示DIVA在军事背景下的潜力。结果可能会在国防部和VA越来越多应用的更广泛学科中产生应用影响,包括科学、工业和政府中的重要数据密集型领域。调查结果将通过国家和国际学术会议、社交媒体、新闻稿和DSTL网络活动广泛传播。开发的软件和功能将通过知识共享许可证提供。沿着通过计划的研究获得的知识,这将被英国视觉分析社区使用。该项目利用现有的技能,设备和技术,提供了显着的价值,并具有较低的启动成本。所有参与者都在三个参与机构的充满活力和成功的研究小组中工作,无需招聘:伦敦城市大学伦敦(牵头),米德尔塞克斯大学和拉夫堡大学。活动方案包括24个月的研究时间超过12个月的时间,并符合在国际竞技场运作的世界级研究人员的时间表和工作量。所有人都致力于工作计划,这将有助于在所有情况下实现机构目标,并得到美国国家视觉分析中心的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Wood其他文献

Organocatalytic glycolysis of polyethylene terephthalate and product separation by membrane filtration
聚对苯二甲酸乙二醇酯的有机催化糖酵解及膜过滤产物分离
  • DOI:
    10.1016/j.cej.2025.162400
  • 发表时间:
    2025-05-15
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Joseph Sutton;Guido Grause;Ali Al Rida Hmayed;Steven T.G. Street;Andrew P. Dove;Joseph Wood
  • 通讯作者:
    Joseph Wood
Customizing Anaphylaxis Guidelines for Emergency Medicine
  • DOI:
    10.1016/j.jemermed.2013.01.018
  • 发表时间:
    2013-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Nowak;Judith Rosen Farrar;Barry E. Brenner;Lawrence Lewis;Robert A. Silverman;Charles Emerman;Daniel P. Hays;W. Scott Russell;Natalie Schmitz;Judi Miller;Ethan Singer;Carlos A. Camargo;Joseph Wood
  • 通讯作者:
    Joseph Wood
AllTheDocks road safety dataset: A cyclist's perspective and experience
AllTheDocks 道路安全数据集:骑自行车者的观点和经验
  • DOI:
    10.48550/arxiv.2404.10528
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chia;Ruikang Zhong;Jennifer Ding;Joseph Wood;Stephen Bee;Mona Jaber
  • 通讯作者:
    Mona Jaber
Dosimetric impact of sparing base of heart on organ at risk doses during lung radiotherapy
  • DOI:
    10.1016/j.radonc.2024.110654
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tom Marchant;Joseph Wood;Kathryn Banfill;Alan McWilliam;Gareth Price;Corinne Faivre-Finn
  • 通讯作者:
    Corinne Faivre-Finn
Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans
  • DOI:
    10.1007/s11051-015-3067-5
  • 发表时间:
    2015-06-13
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Jacob B. Omajali;Iryna P. Mikheenko;Mohamed L. Merroun;Joseph Wood;Lynne E. Macaskie
  • 通讯作者:
    Lynne E. Macaskie

Joseph Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Wood', 18)}}的其他基金

Catalytic Microwave Process for Upgrading of Pyrolysis Liquids from Ubiquitous Plastic Wastes
催化微波工艺对无处不在的塑料废物中的热解液进行升级
  • 批准号:
    EP/Y001168/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
Thermally Responsive Supports for Enhanced Efficiency in PET Depolymerisation
热响应支撑可提高 PET 解聚效率
  • 批准号:
    EP/Y003667/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
A Scalable Process for the Chemical Recycling of PET using Ionic Organocatalysts
使用离子有机催化剂化学回收 PET 的可扩展工艺
  • 批准号:
    EP/V012797/1
  • 财政年份:
    2022
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
Novel Membrane Catalytic Reactor for Waste Polylactic Acid Recycling and Valorisation
用于废聚乳酸回收和增值的新型膜催化反应器
  • 批准号:
    EP/P016405/1
  • 财政年份:
    2017
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
Towards Realisation of Untapped Oil Resources via Enhanced THAI-CAPRI Process Using Novel Catalysts
通过使用新型催化剂的增强型 THAI-CAPRI 工艺实现未开发石油资源
  • 批准号:
    EP/J008303/1
  • 财政年份:
    2012
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
The development of structure in coarse-grained river bed sediments: the key to predicting sediment flux
粗粒河床沉积物的结构发育:预测泥沙通量的关键
  • 批准号:
    NE/H021973/1
  • 财政年份:
    2011
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
Understanding Bio-induced Selectivity in Nanoparticle Catalyst Manufacture
了解纳米颗粒催化剂制造中的生物诱导选择性
  • 批准号:
    EP/I007806/1
  • 财政年份:
    2010
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
IN-SITU CATALYTIC UPGRADING OF HEAVY CRUDE AND BITUMEN: OPTIMISATION OF NOVEL CAPRI REACTOR
重质原油和沥青的原位催化升级:新型卡普里反应器的优化
  • 批准号:
    EP/E057977/1
  • 财政年份:
    2007
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
C-Cycle
C-循环
  • 批准号:
    EP/E010601/1
  • 财政年份:
    2006
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
Heterogeneous Catalysis in Supercritical Fluids: The Enhancement of Catalytic Stability to Coking
超临界流体中的多相催化:焦化催化稳定性的增强
  • 批准号:
    EP/D503892/1
  • 财政年份:
    2006
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CC* Networking Infrastructure: Enhancing network connectivity for data-intensive, multi-institution collaborative science
CC* 网络基础设施:增强数据密集型、多机构协作科学的网络连接
  • 批准号:
    2346718
  • 财政年份:
    2024
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
DynaSun - Dynamics Of The Solar Corona In The Era Of Data Intensive Observations
DynaSun - 数据密集观测时代的日冕动力学
  • 批准号:
    EP/Y037464/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
  • 批准号:
    2342527
  • 财政年份:
    2024
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
  • 批准号:
    2348547
  • 财政年份:
    2024
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Dynamics of the solar corona in the era of data intensive observations (DynaSun)
数据密集观测时代的日冕动力学(DynaSun)
  • 批准号:
    EP/Y037456/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Research Grant
CC* Networking Infrastructure: FAN4Science: Flow-Aware Networking for Data-Intensive Science
CC* 网络基础设施:FAN4Science:数据密集型科学的流感知网络
  • 批准号:
    2346681
  • 财政年份:
    2024
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
MCA Pilot PUI: Data Intensive Research Training (DIRT) in forecasting soil respiration at core terrestrial NEON sites
MCA 试点 PUI:预测陆地 NEON 核心站点土壤呼吸的数据密集型研究培训 (DIRT)
  • 批准号:
    2321958
  • 财政年份:
    2023
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 2 Acquisition of a HPC Cluster for Fostering Interdisciplinary Collaboration on AI-driven and Data-intensive Research and Education in West Tennessee
设备: MRI:第二轨道收购 HPC 集群,以促进田纳西州西部人工智能驱动和数据密集型研究和教育的跨学科合作
  • 批准号:
    2318210
  • 财政年份:
    2023
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 21.96万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了