SEQuence-Analysis Based Hyperheuristics (SEQAH) for Real-World Optimisation Problems
针对现实世界优化问题的基于序列分析的超启发式 (SEQAH)
基本信息
- 批准号:EP/K000519/1
- 负责人:
- 金额:$ 32.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Selective hyperheuristics are a set of optimisation techniques that effectively optimise the search algorithm during an optimisation run by selecting combinations of lower level heuristic operations (e.g. mutation, crossover & replication). They operate at the level above metaheuristics (e.g. evolutionary algorithms) and are thus able to react to changes in the search space by modifying the heuristics that are applied to the search problem. Traditional selective hyperheuristics consider single heuristics and heuristic pair performance when determining the heuristic to select next. This project will develop new methods known as a sequence analysis based hyperheuristics (SEQAH) and will investigate the use of sequence analysis techniques, taken from other computational domains such as bioinformatics and natural-language processing, to determine heuristic selection. SEQAH methods will record the search process as a sequence of pairs of heuristic application and performance, and will process this information to inform the selection of the next heuristic to apply in the optimisation. This will allow the technique to automatically select the best heuristics to apply for a given problem - effectively tuning the algorithm to new optimisation problem types, regardless of the underlying application area. By selecting from a set of heuristics, the SEQAH techniques can combine ordinary heuristic operations (e.g. mutation and crossover) with more problem-specific heuristics such as human-designed 'rules-of-thumb' into one coherent algorithm that is able to generate near-optimal solutions in less computational time.The developed techniques will be tested on problems from the literature and a suite of real-world problems in water distribution optimisation including the design, rehabilitation and operation of large-scale water systems. The optimisation of these systems has the potential to offer improved services in terms of reliability and water quality and to reduce the future cost and environmental impact of providing clean, safe drinking water to homes across the country. The SEQAH technique also has the potential to extend beyond the water industry and should be applicable to any number of optimisation problems in many application areas due to its ability to adapt to new problem spaces online.
选择性超启发式是一组优化技术,可在优化运行期间通过选择较低级别启发式操作(例如变异、交叉和复制)的组合来有效优化搜索算法。它们在元启发法(例如进化算法)之上的级别上运行,因此能够通过修改应用于搜索问题的启发法来对搜索空间的变化做出反应。传统的选择性超启发式在确定下一步选择的启发式时会考虑单个启发式和启发式对的性能。该项目将开发基于超启发式序列分析 (SEQAH) 的新方法,并将研究使用来自生物信息学和自然语言处理等其他计算领域的序列分析技术来确定启发式选择。 SEQAH 方法将搜索过程记录为启发式应用和性能对的序列,并将处理此信息以通知选择要在优化中应用的下一个启发式。这将使该技术能够自动选择适用于给定问题的最佳启发式方法 - 有效地将算法调整为新的优化问题类型,而不管底层应用领域如何。通过从一组启发式中进行选择,SEQAH 技术可以将普通的启发式操作(例如变异和交叉)与更多针对具体问题的启发式(例如人类设计的“经验法则”)结合成一个连贯的算法,能够在更短的计算时间内生成接近最优的解决方案。所开发的技术将针对文献中的问题和一系列配水方面的实际问题进行测试 优化,包括大型供水系统的设计、修复和运行。这些系统的优化有可能在可靠性和水质方面提供改进的服务,并降低未来为全国各地家庭提供清洁、安全饮用水的成本和环境影响。 SEQAH 技术还具有扩展到水行业之外的潜力,并且由于其能够在线适应新的问题空间,因此应该适用于许多应用领域中的任意数量的优化问题。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequence Analysis-based Hyper-heuristics for Water Distribution Network Optimisation
基于序列分析的超启发式供水管网优化
- DOI:10.1016/j.proeng.2015.08.993
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Kheiri A
- 通讯作者:Kheiri A
A general multi-objective hyper-heuristic for water distribution network design with discolouration risk
具有变色风险的配水管网设计的通用多目标超启发式
- DOI:10.2166/hydro.2012.022
- 发表时间:2013
- 期刊:
- 影响因子:2.7
- 作者:Randall-Smith M
- 通讯作者:Randall-Smith M
An analysis of the interface between evolutionary algorithm operators and problem features for water resources problems. A case study in water distribution network design
水资源问题的进化算法算子与问题特征之间的接口分析。
- DOI:10.1016/j.envsoft.2014.12.023
- 发表时间:2015
- 期刊:
- 影响因子:4.9
- 作者:McClymont K
- 通讯作者:McClymont K
A Hidden Markov Model Approach to the Problem of Heuristic Selection in Hyper-Heuristics with a Case Study in High School Timetabling Problems
超启发式启发式选择问题的隐马尔可夫模型方法及其高中时间表问题的案例研究
- DOI:10.1162/evco_a_00186
- 发表时间:2017
- 期刊:
- 影响因子:6.8
- 作者:Kheiri A
- 通讯作者:Kheiri A
A Sequence-based Selection Hyper-heuristic Utilising a Hidden Markov Model
利用隐马尔可夫模型的基于序列的选择超启发式
- DOI:10.1145/2739480.2754766
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Kheiri A
- 通讯作者:Kheiri A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward Keedwell其他文献
Predictive risk modelling of real-world wastewater network incidents
- DOI:
10.1016/j.proeng.2015.08.949 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:
- 作者:
James Bailey;Edward Keedwell;Slobodan Djordjevic;Zoran Kapelan;Chris Burton;Emma Harris - 通讯作者:
Emma Harris
Edward Keedwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward Keedwell', 18)}}的其他基金
Ant Colony Optimisation for the Discovery of Gene-Gene Interactions in Genome-Wide Association Studies
用于发现全基因组关联研究中基因间相互作用的蚁群优化
- 批准号:
EP/J007439/1 - 财政年份:2012
- 资助金额:
$ 32.68万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Stochastic Models for Gene-based Association Analysis of Longitudinal Phenotypes with Sequence Data
合作研究:基于基因的纵向表型与序列数据关联分析的随机模型
- 批准号:
1916246 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Standard Grant
Collaborative Research: Stochastic Models for Gene-based Association Analysis of Longitudinal Phenotypes with Sequence Data
合作研究:基于基因的纵向表型与序列数据关联分析的随机模型
- 批准号:
1915904 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Standard Grant
Characterization of bottlenecks during colonization of C57BL/6 mice by attaching and effacing pathogens using sequence tag-based analysis of microbial populations (STAMP)
使用基于序列标签的微生物群体分析 (STAMP),通过附着和消除病原体来表征 C57BL/6 小鼠定植过程中的瓶颈
- 批准号:
367826 - 财政年份:2016
- 资助金额:
$ 32.68万 - 项目类别:
Studentship Programs
Methodology development and analysis strategies for family-based association studies on the basis of high-throughput sequence data and an application to three Alzheimers'disease data sets
基于高通量序列数据的基于家庭的关联研究的方法学开发和分析策略以及对三个阿尔茨海默病数据集的应用
- 批准号:
315041274 - 财政年份:2016
- 资助金额:
$ 32.68万 - 项目类别:
Research Grants
Longitudinal analysis of respiratory tract microbiome change and sequence-based infection diagnosis during mechanical ventilation
机械通气期间呼吸道微生物组变化的纵向分析和基于序列的感染诊断
- 批准号:
9282381 - 财政年份:2016
- 资助金额:
$ 32.68万 - 项目类别:
Longitudinal analysis of respiratory tract microbiome change and sequence-based infection diagnosis during mechanical ventilation
机械通气期间呼吸道微生物组变化的纵向分析和基于序列的感染诊断
- 批准号:
9180192 - 财政年份:2016
- 资助金额:
$ 32.68万 - 项目类别:
Statistical methods for immuno-repertoire analysis based on TCR sequence data
基于TCR序列数据的免疫组库分析的统计方法
- 批准号:
15K14433 - 财政年份:2015
- 资助金额:
$ 32.68万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Elucidation of corneal transparency healing mechanism based on collagen fiber sequence analysis
基于胶原纤维序列分析阐明角膜透明愈合机制
- 批准号:
15K20264 - 财政年份:2015
- 资助金额:
$ 32.68万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Sequence-based Analysis of Selection during Domestication and Improvement of Chicken
鸡驯化和改良过程中基于序列的选择分析
- 批准号:
254651688 - 财政年份:2014
- 资助金额:
$ 32.68万 - 项目类别:
Research Grants
Genome analysis based on the integration of DNA sequence and shape
基于DNA序列和形状整合的基因组分析
- 批准号:
8795204 - 财政年份:2014
- 资助金额:
$ 32.68万 - 项目类别:














{{item.name}}会员




