Geometry and arithmetics through the theory of algebraic cycles
通过代数循环理论学习几何和算术
基本信息
- 批准号:EP/K005545/1
- 负责人:
- 金额:$ 51.21万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The basic objects of algebraic geometry are algebraic varieties. These are defined locally as the zero locus of polynomial equations. The main goal of algebraic geometry is to classify varieties. An approach consists in attaching invariants to varieties. Some invariants are of an arithmetic nature, e.g. the gcd of the degrees of closed points on X. Some are of a topological nature, e.g. the singular cohomology of the underlying topological space of X. Some are of a geometric nature, e.g. the Chow groups of X. A codimension-n algebraic cycle on X is a formal sum of irreducible subvarieties of codimension n and the Chow group CH^n(X) is the abelian group with basis the irreducible subvarieties of codimension n in X modulo a certain equivalence relation called rational equivalence. Roughly, rational equivalence is the finest equivalence relation on algebraic cycles that makes it possible to define unambiguously an intersection product on cycles. Moreover, the aforementioned invariants for X are encoded (or at least expected to be) in the Chow groups X. Therefore, in some sense, algebraic cycles are the finest invariants for algebraic varieties, and the theory of algebraic cycles lies at the very heart of geometry, topology and number theory.I will integrate methods from K-theory, Galois cohomology and number theory to derive new results in the theory of algebraic cycles on varieties defined over finitely generated fields or other fields of arithmetic interest. Conversely, I will use the theory of algebraic cycles to derive new results of arithmeticinterest. In addition, the outcome of such results will shed new light on the geometry of such varieties. Thus, by its very nature, my research proposal on the theory of algebraic cycles is intradisciplinary within the mathematical sciences.
代数几何的基本对象是代数簇。这些被局部定义为多项式方程的零轨迹。代数几何的主要目标是对簇进行分类。一种方法是将不变量附加到变种上。一些不变量是算术性质的,例如X上闭点的度的gcd。有些是拓扑性质的,例如X的基本拓扑空间的奇异上同调。有些是几何性质的,例如X的Chow群。X上的余维n代数圈是余维n的不可约子簇的形式和,而Chow群CH^n(X)是以X中的余维n的不可约子簇模一个称为有理等价的等价关系为基的阿贝尔群。粗略地说,有理等价是代数圈上最好的等价关系,它使得可以明确地定义圈上的交集积。此外,X的上述不变量被编码(或至少预期被编码)在Chow群X中。因此,在某种意义上,代数圈是代数簇的最好的不变量,代数圈理论是几何,拓扑和数论的核心,我将综合K-理论,伽罗瓦上同调和数论的方法,得出新的结果,在代数圈理论上定义在代数生成域或其他领域的算术兴趣的簇。相反地,我将使用代数圈的理论来推导出新的算术结果。此外,这些结果的结果将揭示新的光的几何形状的品种。因此,就其本质而言,我对代数圈理论的研究建议是数学科学中的学科内的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Derived equivalent threefolds, algebraic representatives, and the coniveau filtration
导出等价三重、代数代表和 coniveau 过滤
- DOI:10.1017/s0305004118000221
- 发表时间:2018
- 期刊:
- 影响因子:0.8
- 作者:ACHTER J
- 通讯作者:ACHTER J
On descending cohomology geometrically
几何上的降上同调
- DOI:10.1112/s0010437x17007151
- 发表时间:2017
- 期刊:
- 影响因子:1.8
- 作者:Achter J
- 通讯作者:Achter J
Projectors on the intermediate algebraic Jacobians
中间代数雅可比行列式的投影仪
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0.6
- 作者:Charles Vial (Author)
- 通讯作者:Charles Vial (Author)
Derived equivalence, Albanese varieties, and the zeta functions of 3-dimensional varieties
导出等价、Albanese 簇和 3 维簇的 zeta 函数
- DOI:10.1090/proc/13810
- 发表时间:2017
- 期刊:
- 影响因子:1
- 作者:Honigs K
- 通讯作者:Honigs K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Vial其他文献
The Walker Abel–Jacobi map descends
沃克·阿贝尔-雅可比地图下降
- DOI:
10.1007/s00209-021-02833-4 - 发表时间:
2021 - 期刊:
- 影响因子:0.8
- 作者:
Jeff Achter;Sebastian Casalaina;Charles Vial - 通讯作者:
Charles Vial
NORMAL FUNCTIONS FOR ALGEBRAICALLY TRIVIAL CYCLES ARE ALGEBRAIC FOR ARITHMETIC REASONS
代数平凡循环的正规函数出于算术原因是代数的
- DOI:
10.1017/fms.2019.34 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jeff Achter;Sebastian Casalaina;Charles Vial - 通讯作者:
Charles Vial
On the Chow groups of the variety of lines of a cubic fourfold
三次四重线的 Chow 群
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Shen;Charles Vial - 通讯作者:
Charles Vial
A complete answer to Albanese base change for incomplete varieties
对于不完整品种的阿尔巴尼碱基变化的完整答案
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jeff Achter;Sebastian Casalaina;Charles Vial - 通讯作者:
Charles Vial
The generalized Franchetta conjecture for some hyper-Kähler varieties
一些超凯勒簇的广义 Franchetta 猜想
- DOI:
10.1016/j.matpur.2019.01.018 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lie Fu;R. Laterveer;Charles Vial;M. Shen - 通讯作者:
M. Shen
Charles Vial的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Vial', 18)}}的其他基金
The theory of algebraic cycles on an arithmetical perspective.
算术角度的代数环理论。
- 批准号:
EP/H028870/1 - 财政年份:2010
- 资助金额:
$ 51.21万 - 项目类别:
Fellowship
相似海外基金
An estimation of the strengths of bounded arithmetics
有界算术强度的估计
- 批准号:
22KJ1121 - 财政年份:2023
- 资助金额:
$ 51.21万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The Arithmetics of Elliptic Curves
椭圆曲线的算术
- 批准号:
572925-2022 - 财政年份:2022
- 资助金额:
$ 51.21万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Dynamical Rigidity Related to Group Actions and Arithmetics
职业:与群体行动和算术相关的动态刚性
- 批准号:
1753042 - 财政年份:2018
- 资助金额:
$ 51.21万 - 项目类别:
Continuing Grant
A Fundamental Study for Connections between Arithmetics at Elementary School and Mathmatics at Junior High School
小学数学与初中数学联系的基础研究
- 批准号:
19530829 - 财政年份:2007
- 资助金额:
$ 51.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genealogy of "Prudence"- on the genesis of the free subject of deliberation-
“审慎”的谱系——论自由商议主体的起源——
- 批准号:
16520006 - 财政年份:2004
- 资助金额:
$ 51.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TEACING PROBLEM- SOLVING IN MATHEMATICS EDUCATION IN ACCORDANCE WITH STUDENT'S APTITUDE : WITH FOCUS ON THE SHIFT FROM QUANTITY TO QUARITY OF SELF STUDY.
数学教育因材施教:注重自学从量到质的转变。
- 批准号:
13680186 - 财政年份:2001
- 资助金额:
$ 51.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Geometry and Arithmetics of Curves
数学科学:曲线几何与算术
- 批准号:
9403905 - 财政年份:1994
- 资助金额:
$ 51.21万 - 项目类别:
Standard Grant
Arithmetics on Jacobian Varieties
雅可比簇的算术
- 批准号:
06452004 - 财政年份:1994
- 资助金额:
$ 51.21万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Mathematical Sciences: Problems in Arithmetics Geometry and Complexity Theory
数学科学:算术几何和复杂性理论中的问题
- 批准号:
9015523 - 财政年份:1990
- 资助金额:
$ 51.21万 - 项目类别:
Continuing Grant














{{item.name}}会员




