Electrochemical Oxidation of Low Molecular Weight Alkanes to Liquid Fuels at Molecular Interfaces

低分子量烷烃在分子界面电化学氧化为液体燃料

基本信息

  • 批准号:
    EP/K007033/1
  • 负责人:
  • 金额:
    $ 32.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The partial oxidation of low molecular weight alkanes (LMWA), to their corresponding alcohols, at low temperature and pressure is considered to be one of the grand challenges in the area of catalysis and energy. Large scale exploitation of methane involves energy intensive processing, such as steam and carbon dioxide reforming, as well as liquefaction for transport from the extraction field. Considering the vast amount of natural gas distributed around the world, including the UK, in addition to local methane produced by feedstock, there is a compelling case to develop low cost/energy catalytic conversion of methane to easily transportable liquid fuels (rather than liquefaction). In this context, electrochemical methods provide an extremely attractive approach to the partial oxidation of methane, not only in terms of scalability, but also due to the inherent low carbon footprint of such technology. In principle, the required overpotential for the interfacial process can be generated by (i) direct photoexcitation of the catalyst or by (ii) coupling electrochemical reactors to photovoltaic devices. However, to date, no viable electrochemical method has been designed for alkane oxidation. This project departs from all conventional catalytic approaches, in order to combine elements of heterogeneous catalysis, photocatalysis and nanoscale electrocatalysis. The complex oxidation of methane, the key LMWA in this project, will be activated at the interface between an aqueous and an immiscible organic solution, at which the Galvani potential difference can be tuned externally. The rationale behind this approach is to maximise the reaction cross-section between high performing nanostructured electrocatalysts, LMWA accumulated in the organic phase and water as a source of OH radicals. The interfacial potential difference can play an important role, not only in changing the driving force for the oxidation, but also in the assembly of highly reactive catalytic centres supported on oxides and carbon based-nanostructures. Colloidal oxide supports such as TiO2 can play multiple roles in the process, including: promoting the interaction between surface OH groups and the active centres, generating highly active OH radicals upon UV-illumination and avoiding irreversible aggregation/coagulation of the metallic active centres. In the case of carbon nanotubes and graphene, these supports will also enhance the stability of the electrocatalytically active nanocentres, as well as extracting electrons accumulated at the nanostructures during methane oxidation. The dynamics of the interfacial processes will be monitored by electrochemical and photoelectrochemical techniques, under potentiostatic control of the liquid/liquid interface. Furthermore, the generation of products and intermediates will be investigated by a variety of in-situ and ex-situ techniques such as Raman spectroscopy and chromatographic methods. Methane is a key target due to its natural abundance, but is recognised to be a particular challenge due to its low reactivity. Consequently the approach will also be broadened to span the electro-oxidation of other LMWA such as ethane, propane and butane. The project will focus on two key goals:i. Establishing the physical principles underlying the electrochemical / photoelectrochemical oxidation of methane and other LMWA to the corresponding alcohols at polarisable liquid/liquid junctionsii. Novel approaches and catalysts for multi-electron transfer reactions of relevance to the energy sector at molecular interfaces.
低分子量烷烃在低温和低压下部分氧化成相应的醇被认为是催化和能源领域的重大挑战之一。甲烷的大规模开采涉及能源密集型加工,如蒸汽和二氧化碳重整,以及液化以从开采现场运输。考虑到分布在世界各地(包括英国)的大量天然气,以及由原料产生的当地甲烷,开发低成本/能量的甲烷催化转化为易于运输的液体燃料(而不是液化)是一个令人信服的案例。在这种情况下,电化学方法提供了一种非常有吸引力的甲烷部分氧化方法,不仅在可扩展性方面,而且由于这种技术固有的低碳足迹。原则上,界面过程所需的过电位可以通过(i)催化剂的直接光激发或通过(ii)将电化学反应器耦合到光伏器件来产生。然而,迄今为止,还没有可行的电化学方法被设计用于烷烃氧化。该项目从所有传统的催化方法出发,旨在将多相催化,电催化和纳米电催化的联合收割机元素结合起来。甲烷的复杂氧化,在这个项目中的关键LMWA,将被激活的水和不混溶的有机溶液之间的界面,在该伽伐尼电位差可以外部调谐。这种方法背后的基本原理是使高性能纳米结构电催化剂、在有机相中积累的LMWA和作为OH自由基来源的水之间的反应截面最大化。界面电位差可以发挥重要作用,不仅在改变氧化的驱动力,而且在组装的高活性催化中心支持的氧化物和碳基纳米结构。胶体氧化物载体如TiO 2可以在该过程中发挥多种作用,包括:促进表面OH基团和活性中心之间的相互作用,在UV照射下产生高度活性的OH自由基,以及避免金属活性中心的不可逆聚集/凝聚。在碳纳米管和石墨烯的情况下,这些载体还将增强电催化活性纳米中心的稳定性,以及在甲烷氧化期间提取在纳米结构处积累的电子。界面过程的动力学将通过电化学和光电化学技术进行监测,在恒电位控制的液体/液体界面。此外,将通过各种原位和非原位技术,如拉曼光谱和色谱方法,研究产物和中间体的产生。甲烷由于其天然丰度而成为关键目标,但由于其低反应性而被认为是一个特殊的挑战。因此,该方法也将被拓宽,以跨越其他LMWA,如乙烷,丙烷和丁烷的电氧化。该项目将侧重于两个关键目标:一。建立了在可极化的液/液交界处甲烷和其他LMWA电化学/光电化学氧化为相应醇的物理原理ii。与分子界面能量部门相关的多电子转移反应的新方法和催化剂。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The significance of bromide in the Brust-Schiffrin synthesis of thiol protected gold nanoparticles.
  • DOI:
    10.1039/c7sc03266h
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Booth SG;Uehara A;Chang SY;La Fontaine C;Fujii T;Okamoto Y;Imai T;Schroeder SLM;Dryfe RAW
  • 通讯作者:
    Dryfe RAW
Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids.
  • DOI:
    10.1021/jacs.7b01820
  • 发表时间:
    2017-05-17
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Kecsenovity E;Endrődi B;Tóth PS;Zou Y;Dryfe RAW;Rajeshwar K;Janáky C
  • 通讯作者:
    Janáky C
Assembly and electrochemistry of carbon nanomaterials at the liquid-liquid interface
  • DOI:
    10.1016/j.electacta.2019.04.035
  • 发表时间:
    2019-06-10
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Rodgers, Andrew N. J.;Rabiu, Aminu K.;Dryfe, Robert A. W.
  • 通讯作者:
    Dryfe, Robert A. W.
Electrochemical Investigation of Adsorption of Single-Wall Carbon Nanotubes at a Liquid/Liquid Interface.
  • DOI:
    10.1002/open.201600136
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Rabiu AK;Toth PS;Rodgers AN;Dryfe RA
  • 通讯作者:
    Dryfe RA
Particle deposition and catalysis at the interface between two immiscible electrolyte solutions (ITIES): A mini-review
两种不混溶电解质溶液(ITIES)界面处的颗粒沉积和催化:小综述
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Dryfe其他文献

Evidence for a Strongly Bound Solvent Molecules: XANES and EXAFS of Aqueous Au(III) Cyanide
强结合溶剂分子的证据:氰化金 (III) 水溶液的 XANES 和 EXAFS
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sin-Yuen Chang;Samuel Booth;Robert Dryfe;Akihiro Uehara;Konstantin Ignatyev;Fred Mosselmans;Sven Schroeder
  • 通讯作者:
    Sven Schroeder

Robert Dryfe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Dryfe', 18)}}的其他基金

Mechanistic Understanding of Capacitive Deionisation (MU-CDI)
电容去离子的机理理解 (MU-CDI)
  • 批准号:
    EP/V049925/1
  • 财政年份:
    2022
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
Rethinking Redox Flow Batteries
重新思考氧化还原液流电池
  • 批准号:
    EP/T01816X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
ISCF Wave 1: 3D electrodes from 2D materials
ISCF 第一波:2D 材料制成的 3D 电极
  • 批准号:
    EP/R023034/1
  • 财政年份:
    2017
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
Graphene enabled next generation battery technology
石墨烯启用下一代电池技术
  • 批准号:
    EP/M507714/1
  • 财政年份:
    2015
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
Electrochemical Energy Storage with Graphene-Enabled Materials
使用石墨烯材料进行电化学储能
  • 批准号:
    EP/K016954/1
  • 财政年份:
    2013
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
Materials World Network: The Designer Nanoparticle
材料世界网络:设计师纳米粒子
  • 批准号:
    EP/H047786/1
  • 财政年份:
    2010
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
Graphene Electrochemistry: Understanding fundamental electron transfer at graphite electrodes
石墨烯电化学:了解石墨电极上的基本电子转移
  • 批准号:
    EP/I005145/1
  • 财政年份:
    2010
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
A Contiunuous and Fully Scalable Interfacial Reactor for Nanoparticle Production
用于纳米粒子生产的连续且完全可扩展的界面反应器
  • 批准号:
    EP/E000665/1
  • 财政年份:
    2007
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
Electroless Deposition: A Mechanistic Approach
无电沉积:一种机械方法
  • 批准号:
    EP/D04717X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant

相似海外基金

Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
  • 批准号:
    EP/X031403/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
  • 批准号:
    EP/X031179/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
The development of multi-metallic low oxidation state main-group compounds
多金属低氧化态主族化合物的研制
  • 批准号:
    EP/Y000129/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Research Grant
Low oxidation state actinide heterolide complexes
低氧化态锕系杂化物配合物
  • 批准号:
    2904721
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Studentship
Low Dose Thyroid Hormone, Mitochondrial Fatty Acid Oxidation, and Treatment of Nonalcoholic Steatohepatitis (NASH)
低剂量甲状腺激素、线粒体脂肪酸氧化和非酒精性脂肪性肝炎 (NASH) 的治疗
  • 批准号:
    10483713
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
Early-Generation Photochemical Oxidation Products of Isoprene Under Low-NO Conditions:Aerosol Formation Potential and Structural Assignments by Ion Mobility Mass Spectral Analysis
低 NO 条件下异戊二烯的早期光化学氧化产物:通过离子淌度质谱分析确定气溶胶形成潜力和结构分配
  • 批准号:
    2304669
  • 财政年份:
    2023
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Inspiration, Frustration, and Fascination: An Excursion into Low-Oxidation State Main Group Chemistry
灵感、沮丧和迷恋:低氧化态主族化学之旅
  • 批准号:
    2153978
  • 财政年份:
    2022
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Standard Grant
Design of Low-temperature Oxidation Catalysis using Catalyst Nano-Assembly
使用催化剂纳米组件的低温氧化催化设计
  • 批准号:
    22H01866
  • 财政年份:
    2022
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simultaneous utilization of vacant and filled orbitals of group 13 element compounds in low oxidation state: novel reaction and photoelectronic property
同时利用低氧化态13族元素化合物的空轨道和满轨道:新颖反应和光电性质
  • 批准号:
    21H01915
  • 财政年份:
    2021
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Application of advanced oxidation process combining microbubbles and plasma to decentralized low carbon sewage treatment facility
微泡与等离子体相结合的高级氧化工艺在分散式低碳污水处理设施中的应用
  • 批准号:
    21K05879
  • 财政年份:
    2021
  • 资助金额:
    $ 32.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了