New Materials from High Pressure and Beyond

来自高压及更高压力的新材料

基本信息

  • 批准号:
    EP/K014331/1
  • 负责人:
  • 金额:
    $ 97.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The discovery of new materials for electronic, magnetic and energy techmology applications motivates much of modern chemistry, physics and materials science. High pressure methods are important for materials synthesis and for inducing new electronic states. This project will explore exciting new materials and also new ideas for materials discovery that go beyond standard high pressure synthesis approaches. In our high pressure materials syntheses, a chemical reaction is carried out at pressures up to 150,000 atmospheres pressure and temperatures up to 1500C. Afterwards the sample is cooled and then decompressed to ambient conditions. In successful cases, a novel material with a new chemical composition or structure is found to have been 'recovered' from the high pressure and temperature reaction conditions. This is a successful discovery strategy for dense, oxide-based, inorganic materials and will be applied to several specific cases. Magnetite is the original magnetic material and remains of fundamental interest and of practical importance in new technologies such as spintronic devices. We have recently solved a long-running problem (first identified in 1939) concerning the low temperature electronic structure of magnetite and we discovered unexpected 'orbital molecule' states where electrons are spread over three adjacent iron atoms. In this project we will use high pressure synthesis to recover new chemically-substituted analogues that preserve the essential electronic features of magnetite, in order to discover new 'orbital molecule' states or arrangements. Ruthenium also forms important magnetic oxides such strontium ruthenate which is used in spintronic and silicon thin-film electronics devices. We have recently discovered a new familty of ruthenium oxides, and high pressure will be used to explore their chemical composition range and electronic and magnetic properties.Oxynitride (oxide-nitride) materials are important for energy technologies as photocatalyts that split water to generate hydrogen, and as phosphors for WLED white-light emitting semiconductor devices. WLED devices are an excellent example of how device innovation (discovery of GaN-based blue LEDs) and materials chemistry (discovery of nitride phosphors) have led to real energy savings on a global scale. We will use a direct high pressure synthesis route to generate new oxynitrides and explore their propeties through collaboration.The successful preparation of a material is usually the chemical end point for high pressure synthesis, but we will also explore new approaches where a synthesised high pressure material is the starting point for chemical investigations. This can be described as a 'hard-soft' method to generate novel materials by relieving the instability of a dense precursor made under 'hard' high pressure and temperature conditions through 'soft' post-synthesis modification. Recent proof-of-concept results have shown that 'hard-soft' chemistry can generate new transition metal oxides beyond high pressure synthesis. We will also perform high pressure measurements of electronic and magnetic properties of recovered materials to discover electronic properties beyond those at ambient pressure, including very low temperature regimes where quantum mechanical variations are important.
用于电子、磁和能源技术应用的新材料的发现极大地推动了现代化学、物理学和材料科学的发展。高压方法对于材料合成和诱导新电子态非常重要。该项目将探索令人兴奋的新材料以及超越标准高压合成方法的材料发现新想法。在我们的高压材料合成中,化学反应在高达 150,000 个大气压的压力和高达 1500°C 的温度下进行。然后将样品冷却,然后减压至环境条件。在成功的案例中,人们发现具有新化学成分或结构的新型材料已从高压和高温反应条件中“恢复”。这是针对致密氧化物基无机材料的成功发现策略,并将应用于几个具体案例。磁铁矿是原始磁性材料,在自旋电子器件等新技术中仍然具有根本意义和实际重要性。我们最近解决了一个长期存在的问题(于 1939 年首次发现),涉及磁铁矿的低温电子结构,并且我们发现了意想不到的“轨道分子”状态,其中电子分布在三个相邻的铁原子上。在这个项目中,我们将使用高压合成来回收新的化学取代类似物,以保留磁铁矿的基本电子特征,以发现新的“轨道分子”状态或排列。钌还形成重要的磁性氧化物,例如用于自旋电子和硅薄膜电子器件的钌酸锶。我们最近发现了一种新的氧化钌家族,将利用高压来探索它们的化学成分范围以及电子和磁性。氮氧化物(氧化物-氮化物)材料对于能源技术非常重要,可以用作分解水产生氢气的光催化剂,也可以用作 WLED 白光发射半导体器件的荧光粉。 WLED 器件是器件创新(基于 GaN 的蓝色 LED 的发现)和材料化学(氮化物荧光粉的发现)如何在全球范围内实现真正节能的绝佳示例。我们将采用直接高压合成路线来生成新的氮氧化物,并通过合作探索其性质。材料的成功制备通常是高压合成的化学终点,但我们也将探索新的方法,其中合成的高压材料是化学研究的起点。这可以被描述为一种“硬-软”方法,通过“软”合成后修饰,消除在“硬”高压和温度条件下制备的致密前体的不稳定性,从而生成新型材料。最近的概念验证结果表明,“硬-软”化学可以产生超越高压合成的新过渡金属氧化物。我们还将对回收材料的电子和磁性进行高压测量,以发现超出环境压力的电子特性,包括量子力学变化很重要的极低温状态。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic frustration in the high-pressure Mn2MnTeO6 (Mn3TeO6-II) double perovskite.
  • DOI:
    10.1039/c9cc07733b
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Á. Arévalo-López;E. Solana-Madruga;C. Aguilar-Maldonado;C. Ritter;O. Mentré;J. Attfield
  • 通讯作者:
    Á. Arévalo-López;E. Solana-Madruga;C. Aguilar-Maldonado;C. Ritter;O. Mentré;J. Attfield
Competing antiferromagnetic orders in the double perovskite Mn2MnReO6 (Mn3ReO6).
  • DOI:
    10.1039/c6cc01290f
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Á. Arévalo-López;F. Stegemann;J. Attfield
  • 通讯作者:
    Á. Arévalo-López;F. Stegemann;J. Attfield
Gérard Demazeau, 07.06.1943-03.11.2017
杰拉尔·德马索, 07.06.1943-03.11.2017
High pressure synthesis, crystal growth and magnetic properties of TiOF
TiOF的高压合成、晶体生长及磁性能
  • DOI:
    10.1016/j.solidstatesciences.2018.03.018
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Cumby J
  • 通讯作者:
    Cumby J
Hard-soft chemistry of Sr 1-x Ca x CrO 3-d solid solutions
Sr 1-x Ca x CrO 3-d 固溶体的硬软化学
  • DOI:
    10.1039/c6qm00136j
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Arevalo-Lopez A
  • 通讯作者:
    Arevalo-Lopez A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J Attfield其他文献

J Attfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J Attfield', 18)}}的其他基金

New Quantum Materials from High Pressure Synthesis
高压合成的新型量子材料
  • 批准号:
    EP/V02972X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Research Grant
Exploring Electronic Materials with Extreme Conditions
探索极端条件下的电子材料
  • 批准号:
    EP/R013004/1
  • 财政年份:
    2018
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Research Grant
High Pressure Synthesis of All Transition Metal Oxide Perovskites and Related Materials
全过渡金属氧化物钙钛矿及相关材料的高压合成
  • 批准号:
    EP/P021786/1
  • 财政年份:
    2017
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Research Grant
Solid-state chemistry for transition-metal oxides: Exploring for new materials with novel functionalities
过渡金属氧化物的固态化学:探索具有新颖功能的新材料
  • 批准号:
    EP/N029119/1
  • 财政年份:
    2016
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Research Grant
New Electronic Materials from Extreme Conditions
极端条件下的新型电子材料
  • 批准号:
    EP/J00099X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Research Grant
High Pressure Synthesis of New Superconductors and Related Materials
新型超导体及相关材料的高压合成
  • 批准号:
    EP/G030332/1
  • 财政年份:
    2009
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Research Grant
Functional Oxide Materials Discovery using Extreme Conditions
使用极端条件发现功能氧化物材料
  • 批准号:
    EP/G048584/1
  • 财政年份:
    2009
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Research Grant
Ordered States in Oxides
氧化物的有序态
  • 批准号:
    EP/F02083X/1
  • 财政年份:
    2008
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Research Grant
High Pressure and Temperature Synthesis of New Electronic Perovskite Oxides
新型电子钙钛矿氧化物的高压高温合成
  • 批准号:
    EP/C528506/1
  • 财政年份:
    2006
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Research Grant

相似国自然基金

Journal of Materials Science & Technology
  • 批准号:
    51024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Tuning material properties under high pressure: predicting new materials via advanced ab initio methods
在高压下调整材料性能:通过先进的从头算方法预测新材料
  • 批准号:
    RGPIN-2018-04303
  • 财政年份:
    2022
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Discovery Grants Program - Individual
New Quantum Materials from High Pressure Synthesis
高压合成的新型量子材料
  • 批准号:
    EP/V02972X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Research Grant
Development of new processes for manufacturing high-performance thermoelectric materials using ultra-high pressure technology
利用超高压技术开发制造高性能热电材料的新工艺
  • 批准号:
    22K19076
  • 财政年份:
    2022
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Tuning material properties under high pressure: predicting new materials via advanced ab initio methods
在高压下调整材料性能:通过先进的从头算方法预测新材料
  • 批准号:
    RGPIN-2018-04303
  • 财政年份:
    2021
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Discovery Grants Program - Individual
New Quantum Materials from High Pressure
高压新量子材料
  • 批准号:
    2582604
  • 财政年份:
    2021
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Studentship
Tuning material properties under high pressure: predicting new materials via advanced ab initio methods
在高压下调整材料性能:通过先进的从头算方法预测新材料
  • 批准号:
    RGPIN-2018-04303
  • 财政年份:
    2020
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Discovery Grants Program - Individual
Tuning material properties under high pressure: predicting new materials via advanced ab initio methods
在高压下调整材料性能:通过先进的从头算方法预测新材料
  • 批准号:
    RGPIN-2018-04303
  • 财政年份:
    2019
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a new controlled shock wave pressure generation method by using a closed space made of materials with different acoustic impedance
利用不同声阻抗材料制成的封闭空间开发新型受控冲击波压力产生方法
  • 批准号:
    18K03921
  • 财政年份:
    2018
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tuning material properties under high pressure: predicting new materials via advanced ab initio methods
在高压下调整材料性能:通过先进的从头算方法预测新材料
  • 批准号:
    RGPIN-2018-04303
  • 财政年份:
    2018
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Discovery Grants Program - Individual
Development of high temperature control technique using belt type high pressure apparatus and application for new materials synthesis
带式高压装置高温控制技术开发及其在新材料合成中的应用
  • 批准号:
    16K14395
  • 财政年份:
    2016
  • 资助金额:
    $ 97.84万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了