New Quantum Materials from High Pressure Synthesis
高压合成的新型量子材料
基本信息
- 批准号:EP/V02972X/1
- 负责人:
- 金额:$ 95.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Electronic technologies such as mobile phones, tablets and laptops have become indispensable to modern life, with improvements in performance, size, energy-consumption etc. occurring year-on-year. Within these devices are materials with particular electronic properties such as semiconductors and magnets. Their characteristics and performance are largely limited by the quantum mechanical behaviour of single or a few electrons, as elucidated in the early 20th century. Now in the 21st century there is an increasing drive towards the use of a new generation of quantum technologies based upon more sophisticated effects such as the correlation or entanglement of multiple quantum states, e.g. in a quantum computer.Underlying these developments is the search for new quantum materials where electron-electron correlation gives rise to entangled or correlated ground states such as long range orders of atomic spin, orbital, or charge states, or fluid-like states like superconductors and quantum spin liquids (QSLs) in which many possible paired quantum states are superimposed. Topological effects have been used to discover further types of quantum material in recent years, through effects such Kitaev coupling which depends upon the directions of pairwise magnetic interactions within a material.This project aims to synthesise new quantum materials within the family of perovskite oxides using high pressure reaction methods. Perovskite oxides have structures based on the ABO3 arrangement of the mineral CaTiO3. They have enormous chemical and structural flexibility as well as outstanding physical and chemical properties, which are often the best in their field, e.g. ferroelectric BaTiO3, YBa2Cu3O7 high-Tc superconductor, (La,Sr)MnO3 and Sr2FeMoO6 CMR (colossal magnetoresistance) for spintronics, multiferroic BiFeO3, and mixed conductors such as doped LaCrO3 for fuel cells. We will target perovskites based on heavy transition metals with electronic states that have small spins, which amplifies quantum behaviour, and strong spin-orbit coupling that gives rise to strong anisotropy (local directionality) in properties that accentuate topological influences. Chemical ordering of cations like that of Fe/Mo in Sr2FeMoO6, known as a double perovskite derivative, will be used to create interesting network topologies that tend to frustrate simple 'up-down' magnetic orders, making quantum fluctuations more dominant.High pressure (HP) synthesis methods will be used as these are known to be effective for stabilising perovskite type materials, and also for generating cation ordered networks within the basic ABO3 arrangement. Proof of concept experiments have shown that 1:1 or 1:2 orders of cations on the perovskite B sites, and also 1:1 ordering of transition metal and other types of cation at A sites can be generated at HP. A 'double double perovskite' arrangement we discovered even has 1:1 A and B site orders, e.g. CaMnFeReO6, and so offers many permutations for discovery of new quantum materials. Oxide materials are incompressible so GPa-scale pressures (1 GPa = 10,000 atmospheres) are needed to change their chemistry, structures and properties significantly. Our ability to reach pressures up to 22 GPa (whereas many early and even present-day groups can only access 6-8 GPa) will enable us to discover these new materials. We will also collaborate with external partner groups to make other types of oxide and nitride materials that show interesting and useful magnetic, catalytic, and energy-related properties.
移动的手机、平板电脑和笔记本电脑等电子技术已成为现代生活中不可或缺的一部分,性能、尺寸、能耗等方面的改进逐年发生。在这些器件中,有一些具有特殊电子特性的材料,如半导体和磁铁。它们的特性和性能在很大程度上受到单个或几个电子的量子力学行为的限制,正如世纪初所阐明的那样。在21世纪的世纪,人们越来越倾向于使用基于更复杂效应的新一代量子技术,例如在量子计算机中使用多个量子态的相关或纠缠。这些发展的基础是寻找新的量子材料,其中电子-电子相关产生纠缠或相关基态,例如原子自旋的长程有序,轨道或电荷态,或类似流体的状态,如超导体和量子自旋液体(QSL),其中许多可能的成对量子态叠加。近年来,拓扑效应已被用于发现更多类型的量子材料,通过Kitaev耦合等效应,这取决于材料中成对磁相互作用的方向。该项目旨在使用高压反应方法合成钙钛矿氧化物家族中的新量子材料。过氧化氢氧化物具有基于矿物CaTiO 3的ABO 3排列的结构。它们具有巨大的化学和结构灵活性以及出色的物理和化学性能,这些通常是其领域中最好的,例如铁电BaTiO 3、YBa 2 Cu 3 O 7高Tc超导体、用于自旋电子学的(La,Sr)MnO 3和Sr 2 FeMoO 6 CMR(庞磁阻)、多铁性BiFeO 3和混合导体,例如用于燃料电池的掺杂LaCrO 3。我们将针对基于重过渡金属的钙钛矿,其电子态具有小自旋,这会放大量子行为,并且具有强的自旋-轨道耦合,这会在属性中产生强各向异性(局部方向性),从而加剧拓扑影响。类似于双钙钛矿衍生物Sr 2FeMoO 6中Fe/Mo的阳离子的化学排序将用于创建有趣的网络拓扑结构,这些拓扑结构往往会破坏简单的“上下”磁性顺序,使量子波动更占主导地位。高压(HP)合成方法将被使用,因为这些方法已知对稳定钙钛矿型材料有效,并且还用于在基本ABO 3排列内产生阳离子有序网络。概念验证实验已经表明,在HP处可以在钙钛矿B位点上产生1:1或1:2阶的阳离子,以及在A位点处产生1:1阶的过渡金属和其他类型的阳离子。我们发现的“双双钙钛矿”排列甚至具有1:1的A和B位点顺序,例如CaMnFeReO 6,因此为发现新的量子材料提供了许多排列。氧化物材料是不可压缩的,因此需要GPa级的压力(1 GPa = 10,000个大气压)来显著改变它们的化学、结构和性质。我们能够达到22 GPa的压力(而许多早期甚至现在的团体只能达到6-8 GPa)将使我们能够发现这些新材料。我们还将与外部合作伙伴团体合作,制造其他类型的氧化物和氮化物材料,这些材料显示出有趣且有用的磁性、催化和能量相关特性。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CaFeFeNbO6 - an iron-based double double perovskite.
CaFeFeNbO6 - 一种铁基双双钙钛矿。
- DOI:10.1039/d3cc01115a
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ji K
- 通讯作者:Ji K
Giant coercivity and spin clusters in high pressure polymorphs of Mn 2 LiReO 6 .
Mn 2 LiReO 6 高压多晶型物中的巨大矫顽力和自旋团簇。
- DOI:10.1039/d2tc00451h
- 发表时间:2022
- 期刊:
- 影响因子:6.4
- 作者:Solana-Madruga E
- 通讯作者:Solana-Madruga E
Double and double double perovskites in the RMnMnTaO6 series
RMnMnTaO6 系列中的双钙钛矿和双双钙钛矿
- DOI:10.1016/j.jssc.2022.123329
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Ji K
- 通讯作者:Ji K
A New Cation-Ordered Structure Type with Multiple Thermal Redistributions in Co 2 InSbO 6
Co 2 InSbO 6 中具有多重热再分布的新型阳离子有序结构
- DOI:10.1002/ange.202203062
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ji K
- 通讯作者:Ji K
Coexisting commensurate and incommensurate magnetic orders in the double double perovskite CaMnCoWO 6
双双钙钛矿 CaMnCoWO 6 中共存的相称和不相称磁序
- DOI:10.1002/zaac.202300047
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ji K
- 通讯作者:Ji K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J Attfield其他文献
J Attfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J Attfield', 18)}}的其他基金
Exploring Electronic Materials with Extreme Conditions
探索极端条件下的电子材料
- 批准号:
EP/R013004/1 - 财政年份:2018
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
High Pressure Synthesis of All Transition Metal Oxide Perovskites and Related Materials
全过渡金属氧化物钙钛矿及相关材料的高压合成
- 批准号:
EP/P021786/1 - 财政年份:2017
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
Solid-state chemistry for transition-metal oxides: Exploring for new materials with novel functionalities
过渡金属氧化物的固态化学:探索具有新颖功能的新材料
- 批准号:
EP/N029119/1 - 财政年份:2016
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
New Materials from High Pressure and Beyond
来自高压及更高压力的新材料
- 批准号:
EP/K014331/1 - 财政年份:2013
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
New Electronic Materials from Extreme Conditions
极端条件下的新型电子材料
- 批准号:
EP/J00099X/1 - 财政年份:2012
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
High Pressure Synthesis of New Superconductors and Related Materials
新型超导体及相关材料的高压合成
- 批准号:
EP/G030332/1 - 财政年份:2009
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
Functional Oxide Materials Discovery using Extreme Conditions
使用极端条件发现功能氧化物材料
- 批准号:
EP/G048584/1 - 财政年份:2009
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
High Pressure and Temperature Synthesis of New Electronic Perovskite Oxides
新型电子钙钛矿氧化物的高压高温合成
- 批准号:
EP/C528506/1 - 财政年份:2006
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Quantum Simulation: A New Era for Materials Science
量子模拟:材料科学的新时代
- 批准号:
10107055 - 财政年份:2024
- 资助金额:
$ 95.18万 - 项目类别:
Small Business Research Initiative
New Frontiers in Magnetic Quantum Materials
磁性量子材料的新领域
- 批准号:
DGDND-2020-04660 - 财政年份:2022
- 资助金额:
$ 95.18万 - 项目类别:
DND/NSERC Discovery Grant Supplement
New Routes from Topological Materials to Quantum Computing
从拓扑材料到量子计算的新路线
- 批准号:
RGPIN-2018-04380 - 财政年份:2022
- 资助金额:
$ 95.18万 - 项目类别:
Discovery Grants Program - Individual
New Quantum Materials with Spin Liquid Ground States
具有自旋液态基态的新型量子材料
- 批准号:
580938-2022 - 财政年份:2022
- 资助金额:
$ 95.18万 - 项目类别:
Alliance Grants
Targeted Development of New Quantum Materials with Topological Properties
具有拓扑特性的新型量子材料的定向开发
- 批准号:
580924-2022 - 财政年份:2022
- 资助金额:
$ 95.18万 - 项目类别:
Alliance Grants
New Frontiers in Magnetic Quantum Materials
磁性量子材料的新领域
- 批准号:
RGPIN-2020-04660 - 财政年份:2022
- 资助金额:
$ 95.18万 - 项目类别:
Discovery Grants Program - Individual
Designing and exploring new quantum materials based on Fermi surface topological transitions
基于费米表面拓扑跃迁的新型量子材料的设计与探索
- 批准号:
EP/V000136/1 - 财政年份:2021
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
CAREER: New Platforms for Topology, Correlation, and Superconductivity in Quantum Materials
职业:量子材料拓扑、相关性和超导性的新平台
- 批准号:
2045781 - 财政年份:2021
- 资助金额:
$ 95.18万 - 项目类别:
Continuing Grant
Exploring new approaches to scanning tunnelling microscopy on quantum materials
探索量子材料扫描隧道显微镜的新方法
- 批准号:
563639-2021 - 财政年份:2021
- 资助金额:
$ 95.18万 - 项目类别:
University Undergraduate Student Research Awards
New Frontiers in Magnetic Quantum Materials
磁性量子材料的新领域
- 批准号:
RGPIN-2020-04660 - 财政年份:2021
- 资助金额:
$ 95.18万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




