Robust Mathematical Modelling of Household-Stratified Epidemic Time-series

家庭分层流行病时间序列的稳健数学模型

基本信息

  • 批准号:
    EP/K026550/1
  • 负责人:
  • 金额:
    $ 27.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Infectious diseases affect us all, and are one of the main risks to human health and quality of life worldwide. Despite advances in our understanding of them, a great many questions remain about the way in which infectious diseases actually transmit through human populations. Some open questions, even for common diseases like influenza, relate to estimation of quite basic quantities: how infectious is the illness in different contexts; how long cases of different ages are infectious for; and how much immunity to re-infection is conferred upon recovery.Other more fundamental questions relate to more subtle issues. Many human pathogen species are differentiated into strains that can be identified using modern laboratory techniques, but the way that these interact with each other - for example, whether previous infection with one strain confers immunity to another - is complex and hard to determine. At the same time, the relationship between severity of illness, and how infectious as case is, can be quite complex.Answering these and other questions requires study of disease transmission in a natural setting, but simply measuring the amount of illness in a population does not yield sufficient information to resolve them. Conducting a household cohort study, which involves measuring infections in several whole households over time, offers the promise of much more information. Such studies are being run with increasing frequency.This project is about developing the mathematics needed to analyse household cohort studies in a way that extracts as much novel epidemiological information as possible. There are several steps to be taken: a first question might be how likely a given set of study results are to be observed if we knew every relevant quantity. By creating methods to calculate such a quantity efficiently on a computer, it can become possible to invert the process and gain insight into the epidemiological mechanisms that generate the data.Ultimately, by knowing more about the way in which diseases spread through the human population, we can improve our control of them. For example, if new cases of a disease do not become infectious for several days, then this gives time for quarantine to be an effective control measure. If within-household transmission is much more intense than between-household transmission, then interventions should be focused on the household.
传染病影响我们所有人,是全世界人类健康和生活质量的主要风险之一。尽管我们对它们的理解有所进步,但关于传染病实际上通过人群传播的方式,仍然存在许多问题。一些悬而未决的问题,即使是像流感这样的常见疾病,也涉及到对相当基本的数量的估计:疾病在不同情况下的传染性有多大;不同年龄的病例的传染性有多长;康复后对再次感染的免疫力有多大;其他更基本的问题涉及更微妙的问题。许多人类病原体物种被区分为可以使用现代实验室技术识别的菌株,但这些菌株相互作用的方式-例如,先前感染一种菌株是否会赋予另一种菌株免疫力-是复杂的,难以确定。与此同时,疾病的严重程度和传染性之间的关系可能相当复杂,要解决这些问题和其他问题,需要研究疾病在自然环境中的传播,但仅仅测量人口中的疾病数量并不能产生足够的信息来解决这些问题。进行一项家庭队列研究,包括测量几个家庭的感染情况,可以提供更多的信息。这类研究越来越频繁,本项目旨在开发分析住户队列研究所需的数学方法,以便尽可能多地提取新的流行病学信息。有几个步骤需要采取:第一个问题可能是,如果我们知道每一个相关的数量,那么一组给定的研究结果被观察到的可能性有多大。通过创造在计算机上有效计算这一数量的方法,可以逆转这一过程,并深入了解产生数据的流行病学机制,最终,通过更多地了解疾病在人群中传播的方式,我们可以改善对疾病的控制。例如,如果一种疾病的新病例在几天内没有传染性,那么这就为检疫提供了时间,使其成为一种有效的控制措施。如果家庭内传播比家庭间传播严重得多,那么干预措施应侧重于家庭。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas House其他文献

Paper #53 - Reproducibility and validity of goniometric iPhone applications for shoulder range measurements in elite throwers
  • DOI:
    10.1016/j.jse.2016.12.049
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    C. Thomas Vangsness;Alexander Nazareth;Thomas House
  • 通讯作者:
    Thomas House
Erratum to: Dynamics of stochastic epidemics on heterogeneous networks
  • DOI:
    10.1007/s00285-016-1004-6
  • 发表时间:
    2016-04-20
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Matthew Graham;Thomas House
  • 通讯作者:
    Thomas House

Thomas House的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas House', 18)}}的其他基金

Epidemic modelling and statistical support for policy: sub-populations, forecasting, and long-term planning
流行病模型和政策统计支持:亚人群、预测和长期规划
  • 批准号:
    EP/V027468/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Research Grant
Operationalising Modern Mathematical Epidemiology
现代数学流行病学的应用
  • 批准号:
    EP/N033701/1
  • 财政年份:
    2016
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Fellowship
Robust Mathematical Modelling of Household-Stratified Epidemic Time-series
家庭分层流行病时间序列的稳健数学模型
  • 批准号:
    EP/K026550/2
  • 财政年份:
    2015
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Research Grant
Disease transmission and control in complex, structured populations
复杂、结构化人群中的疾病传播和控制
  • 批准号:
    EP/J002437/2
  • 财政年份:
    2015
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Fellowship
Disease transmission and control in complex, structured populations
复杂、结构化人群中的疾病传播和控制
  • 批准号:
    EP/J002437/1
  • 财政年份:
    2011
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Fellowship

相似海外基金

Mathematical Modelling of Rare Events in Nanoflows: A Feasibility Study
纳流中罕见事件的数学建模:可行性研究
  • 批准号:
    EP/W031426/1
  • 财政年份:
    2023
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Research Grant
Mathematical modelling of cardiac perfusion
心脏灌注的数学模型
  • 批准号:
    2888273
  • 财政年份:
    2023
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Studentship
Mathematical modelling of lava flows undergoing rheological evolution
经历流变演化的熔岩流的数学模型
  • 批准号:
    EP/X028011/1
  • 财政年份:
    2023
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Fellowship
Mathematical modelling techniques and applications
数学建模技术及应用
  • 批准号:
    2868747
  • 财政年份:
    2023
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Studentship
Understanding the effect of mutations on cell behaviour in blood disorders through mathematical modelling and computational analysis
通过数学建模和计算分析了解突变对血液疾病细胞行为的影响
  • 批准号:
    2887435
  • 财政年份:
    2023
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Studentship
Multiscale mathematical modelling to gain insights into hepatitis viruses
多尺度数学建模以深入了解肝炎病毒
  • 批准号:
    DE220100284
  • 财政年份:
    2023
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Discovery Early Career Researcher Award
Optimising the treatment of inflammation by targeting the phosphorylation of tristetraprolin: a combined experimental and mathematical modelling appro
通过靶向三四脯氨酸磷酸化优化炎症治疗:实验和数学建模相结合的方法
  • 批准号:
    2889903
  • 财政年份:
    2023
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Studentship
Life and Physical Sciences interface: Whole animal mathematical and computational modelling of motion
生命与物理科学接口:整个动物运动的数学和计算模型
  • 批准号:
    BB/X005038/1
  • 财政年份:
    2023
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Research Grant
Modelling, predicting and risk assessment of mpox (monkeypox) and other (re)emerging zoonotic threats to inform decision-making and public health actions: mathematical, geospatial and machine learning approaches
对mpox(猴痘)和其他(重新)出现的人畜共患威胁进行建模、预测和风险评估,为决策和公共卫生行动提供信息:数学、地理空间和机器学习方法
  • 批准号:
    481139
  • 财政年份:
    2023
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Operating Grants
Mathematical modelling of hydrogen isotope transport and retention behaviour during nuclear fusion plant-scale operations
核聚变工厂规模运行期间氢同位素传输和保留行为的数学模型
  • 批准号:
    2906882
  • 财政年份:
    2023
  • 资助金额:
    $ 27.58万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了