Solar Fuels
太阳能燃料
基本信息
- 批准号:EP/K027468/1
- 负责人:
- 金额:$ 32.23万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
BackgroundSolar Energy is the world's largest renewable energy resource; the solar irradiation on the plant in one hour exceeds our current annual global energy demand. Existing solar conversion technologies achieve the conversion of solar energy to electricity (photovoltaics) or heat (solar thermal). Both technologies are making rapid scientific and technical progress, and achieving substantial market growth. For example 6.4 x 10^10 W of photovoltaic (PV) systems had been installed in > 100 countries by December 2011. However these solar conversion technologies have two significant limitations - the lack of a viable, scale-able energy storage strategy to address the intermittency of solar irradiation - and the lack of a viable mechanism to convert sunlight into transportation fuel. Given that transportation currently comprises ~ 1/3 of global energy demand, this latter limitation is of particular concern. Plant photosynthesis demonstrates the viability of the direct conversion of sunlight to chemical fuels, storing the incident solar irradiation in the form of chemical bonds. However the relatively low solar to biomass energy conversion efficiencies of natural photosynthesis, and the limited availability of suitable cultivatable land, limit the global potential of direct bioenergy conversion. As such, artificial photosynthetic strategies are attracting extensive interest for the development of chemical reactors capable of utilising sunlight to drive the synthesis of molecular fuels. The production of fuels (H2, HCO2H, CH3OH, CH4 etc.) using solar energy is now a very rapidly developing research field internationally. It is highly inter-disciplinary and multi-disciplinary, encompassing a range of scientifically distinct approaches to solar-driven synthesis of molecular fuels. Whilst the potential role(s) of solar-driven fuel synthesis within the overall parallel challenges of solar energy utilisation and renewable fuel synthesis needs to be clarified, there is increasing appreciation of the importance of meeting these challenges, and recent impressive scientific advances in the solar fuels field, are driving this field very rapidly up the scientific, commercial and policy agendas.Network FocusThe Solar Fuels Network will focus on direct photo-driven fuel synthesis strategies. These include photoelectrochemical, molecular and photocatalytic strategies. Developing these strategies requires bringing together a range of disciplines including photoelectrochemistry, redox catalysis, molecular and semiconductor photochemistry, materials and particularly nanomaterials design and synthesis, photoreactor design and engineering as well as technology, environmental and lifecycle analyses. Whilst the Network will focus on direct photo-driven processes, it is important to recognise that advances in this field will most probably be dependent upon advances in wider research fields, including electrocatalysis, biological photosynthetic processes, semiconductor photocatalysis and photovoltaics. Furthermore, assessment of solar fuels technology applications will require interfacing with, and evaluation against, alternative or complementary fuel synthesis strategies including water electrolysis, thermochemical CO2 reduction, CO2 capture, fuel cells, solar cells and alternative energy storage strategies. As such, the Network will plan to work closely with these research communities, including in particular organising joint events with suitable partner programmes and organisations - for example, the CO2 Chemistry and Semiconductor Photocatalysis Networks, the Hydrogen and Fuel Cell, Storage, Bioenergy and Solar Supergen Hubs, the EG&S and Nanotechnology KTN's, the Royal Society of Chemistry etc.
背景太阳能是世界上最大的可再生能源;该工厂一小时内的太阳辐射量超过了我们目前每年的全球能源需求。现有的太阳能转换技术实现将太阳能转换为电能(光伏)或热(光热)。这两种技术都在取得快速的科学技术进步,并实现了可观的市场增长。例如,截至 2011 年 12 月,超过 100 个国家已安装了 6.4 x 10^10 W 的光伏 (PV) 系统。然而,这些太阳能转换技术有两个重大局限性:缺乏可行的、可扩展的能源存储策略来解决太阳辐射的间歇性问题,以及缺乏将阳光转化为运输燃料的可行机制。鉴于目前交通运输约占全球能源需求的 1/3,后一个限制尤其值得关注。植物光合作用证明了将阳光直接转化为化学燃料的可行性,以化学键的形式存储入射的太阳辐射。然而,自然光合作用的太阳能到生物质能的转换效率相对较低,并且合适的耕地有限,限制了直接生物能转换的全球潜力。因此,人工光合作用策略引起了人们对开发能够利用阳光驱动分子燃料合成的化学反应器的广泛兴趣。利用太阳能生产燃料(H2、HCO2H、CH3OH、CH4等)目前是国际上发展非常迅速的研究领域。它是高度跨学科和多学科的,涵盖了一系列太阳能驱动分子燃料合成的科学独特方法。虽然太阳能驱动的燃料合成在太阳能利用和可再生燃料合成的总体并行挑战中的潜在作用需要澄清,但人们越来越认识到应对这些挑战的重要性,并且最近在太阳能燃料领域取得的令人印象深刻的科学进展正在推动该领域迅速进入科学、商业和政策议程。网络焦点太阳能燃料网络将重点关注直接 光驱动燃料合成策略。这些包括光电化学、分子和光催化策略。制定这些策略需要汇集一系列学科,包括光电化学、氧化还原催化、分子和半导体光化学、材料(特别是纳米材料)设计和合成、光反应器设计和工程以及技术、环境和生命周期分析。虽然该网络将重点关注直接光驱动过程,但重要的是要认识到该领域的进展很可能取决于更广泛研究领域的进展,包括电催化、生物光合作用过程、半导体光催化和光伏。此外,太阳能燃料技术应用的评估将需要与替代或补充燃料合成策略进行对接和评估,包括水电解、热化学二氧化碳还原、二氧化碳捕获、燃料电池、太阳能电池和替代能源存储策略。因此,该网络将计划与这些研究团体密切合作,特别包括与合适的合作伙伴计划和组织组织联合活动,例如二氧化碳化学和半导体光催化网络、氢和燃料电池、存储、生物能源和太阳能超生中心、EG&S 和纳米技术 KTN、英国皇家化学学会等。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Broadband plasmon photocurrent generation from Au nanoparticles/ mesoporous TiO2 nanotube electrodes
- DOI:10.1016/j.solmat.2015.02.021
- 发表时间:2015-03
- 期刊:
- 影响因子:6.9
- 作者:Xu Wu;A. Centeno;A. Centeno;Xuemei Zhang;Daniel Darvill;M. Ryan;D. Riley;N. Alford;F. Xie
- 通讯作者:Xu Wu;A. Centeno;A. Centeno;Xuemei Zhang;Daniel Darvill;M. Ryan;D. Riley;N. Alford;F. Xie
From millimetres to metres: the critical role of current density distributions in photo-electrochemical reactor design
- DOI:10.1039/c6ee03036j
- 发表时间:2017-01-01
- 期刊:
- 影响因子:32.5
- 作者:Hankin, A.;Bedoya-Lora, F. E.;Kelsall, G. H.
- 通讯作者:Kelsall, G. H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Durrant其他文献
Solar to fuel
太阳能转化为燃料
- DOI:
10.1038/nmat2578 - 发表时间:
2009-12-01 - 期刊:
- 影响因子:38.500
- 作者:
Andrea Listorti;James Durrant;Jim Barber - 通讯作者:
Jim Barber
Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film
- DOI:
10.1016/j.jphotochem.2005.06.001 - 发表时间:
2006-01-25 - 期刊:
- 影响因子:
- 作者:
Andrew Mills;Gerry Doyle;Ana M. Peiro;James Durrant - 通讯作者:
James Durrant
James Durrant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Durrant', 18)}}的其他基金
Polymer semiconductors toward efficient photocatalytic H2 production from sea water - understanding and exploiting the presence of ions
聚合物半导体从海水中高效光催化制氢——了解和利用离子的存在
- 批准号:
EP/X027449/1 - 财政年份:2022
- 资助金额:
$ 32.23万 - 项目类别:
Fellowship
Towards stable solar water-splitting devices: elucidating the degradation kinetics in metal oxides-based photoelectrochemical devices
迈向稳定的太阳能水分解装置:阐明基于金属氧化物的光电化学装置的降解动力学
- 批准号:
EP/X027430/1 - 财政年份:2022
- 资助金额:
$ 32.23万 - 项目类别:
Fellowship
Application Targeted and Integrated Photovoltaics - Enhancing UK Capability in Solar
应用目标和集成光伏——增强英国的太阳能能力
- 批准号:
EP/T028513/1 - 财政年份:2020
- 资助金额:
$ 32.23万 - 项目类别:
Research Grant
Metal substrate mounted flexible dye sensitised semiconductor solar cells
金属基板安装柔性染料敏化半导体太阳能电池
- 批准号:
EP/E035175/1 - 财政年份:2007
- 资助金额:
$ 32.23万 - 项目类别:
Research Grant
相似海外基金
RUI: Photocatalytic Protein-Catalyst Hybrids to Perform Solar Carbon Dioxide Reduction to Carbon-Based Fuels or Chemicals
RUI:光催化蛋白质催化剂混合体可将太阳能二氧化碳还原为碳基燃料或化学品
- 批准号:
2247052 - 财政年份:2023
- 资助金额:
$ 32.23万 - 项目类别:
Standard Grant
REFINE - From solar energy to fuel: A holistic artificial photosynthesis platform for the production of viable solar fuels
REFINE - 从太阳能到燃料:用于生产可行太阳能燃料的整体人工光合作用平台
- 批准号:
10106958 - 财政年份:2023
- 资助金额:
$ 32.23万 - 项目类别:
EU-Funded
From solar energy to fuel: A holistic artificial photosynthesis platform to produce viable solar fuels (REFINE)
从太阳能到燃料:生产可行太阳能燃料的整体人工光合作用平台 (REFINE)
- 批准号:
10095746 - 财政年份:2023
- 资助金额:
$ 32.23万 - 项目类别:
EU-Funded
Materials Engineering of Efficient Solar Fuels
高效太阳能燃料材料工程
- 批准号:
RGPIN-2018-06492 - 财政年份:2022
- 资助金额:
$ 32.23万 - 项目类别:
Discovery Grants Program - Individual
Design Transformative Energy Materials Interfaces for Solar Fuels
设计太阳能燃料的变革性能源材料界面
- 批准号:
RGPIN-2020-05903 - 财政年份:2022
- 资助金额:
$ 32.23万 - 项目类别:
Discovery Grants Program - Individual
Photothermal materials for efficient solar thermal production of heat, electricity, and fuels
用于高效太阳能热生产热、电和燃料的光热材料
- 批准号:
RGPIN-2019-06801 - 财政年份:2022
- 资助金额:
$ 32.23万 - 项目类别:
Discovery Grants Program - Individual
A living bionic leaf to produce solar fuels and chemicals from carbon dioxide
活的仿生叶子,可利用二氧化碳生产太阳能燃料和化学品
- 批准号:
2742875 - 财政年份:2022
- 资助金额:
$ 32.23万 - 项目类别:
Studentship
Platform molecular materials and surfaces for solar fuels generation
用于太阳能燃料发电的平台分子材料和表面
- 批准号:
RGPIN-2018-04391 - 财政年份:2022
- 资助金额:
$ 32.23万 - 项目类别:
Discovery Grants Program - Individual
Materials Engineering of Efficient Solar Fuels
高效太阳能燃料材料工程
- 批准号:
RGPIN-2018-06492 - 财政年份:2021
- 资助金额:
$ 32.23万 - 项目类别:
Discovery Grants Program - Individual
Development of Molecular Devices for Solar Fuels Generation based on Carbon Nitride Composites
基于氮化碳复合材料的太阳能燃料发电分子器件的开发
- 批准号:
21H01952 - 财政年份:2021
- 资助金额:
$ 32.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




