New Algebraic Structures inspired by Gauge/Gravity Dualities
受规范/重力对偶性启发的新代数结构
基本信息
- 批准号:EP/K031805/1
- 负责人:
- 金额:$ 28.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the last twenty years mathematics and physics have significantly influenced each other and became highly entangled. Mathematical physics was always producing a wide variety of new concepts and problems that became important subjects of the pure mathematical research. The growth of gauge, gravity and string theories have made the relation between these subjects closer than ever before. An important driving force was the discovery of quantum groups and of the gauge/gravity dualities. Here the leading role was played by the the so-called AdS/CFT duality and the underlying integrable structure of it.A far-reaching concept is the effect of boundaries and the corresponding boundary conditions. They are unavoidable in almost all models of mathematical physics and are of the fundamental importance. The introduction of boundaries into the theory of quantum groups leads to a whole new class of the so-called reflection algebras. Such algebras were shown to appear in numerous mathematical models and are at the core of the integrable structure of them. Furthermore, these algebras were also shown to play a prominent role in the AdS/CFT. However a coherent framework for describing such algebras is not known, and many properties of the reflection algebras are still an open question.The goal of this research is to develop new algebraic methods and intradisciplinary connections between the axiomatic theory of algebras and the theory of quantum groups inspired by the integrable structure of the AdS/CFT, in particular by shedding more light on the effects of boundaries and different boundary configurations. The research is driven by applying algebraic objects such as the quantum affine and Yangian algebras to find elegant, exact solutions describing the models that arise from and are inspired by the gauge/gravity dualities.
在过去的二十年里,数学和物理相互影响,并变得高度纠缠。数学物理总是产生各种各样的新概念和新问题,成为纯数学研究的重要课题。规范理论、引力理论和弦理论的发展使这些学科之间的关系比以往任何时候都更加紧密。一个重要的推动力是量子群和规范/引力二象性的发现。这里的主角是所谓的AdS/CFT对偶及其潜在的可积结构。一个意义深远的概念是边界的作用和相应的边界条件。它们在几乎所有的数学物理模型中都是不可避免的,并且具有根本的重要性。在量子群理论中引入边界导致了一类全新的所谓反射代数。这些代数被证明出现在许多数学模型中,并且是它们的可积结构的核心。此外,这些代数在AdS/CFT中也发挥了重要作用。然而,描述这种代数的连贯框架尚不清楚,反射代数的许多性质仍然是一个悬而未决的问题。本研究的目标是在AdS/CFT的可积结构的启发下,开发新的代数方法和代数公理化理论与量子群理论之间的学科内联系,特别是通过更多地揭示边界和不同边界构型的影响。这项研究是通过应用代数对象,如量子仿射和Yangian代数,来找到描述由规范/重力对偶性产生并受其启发的模型的优雅、精确的解来驱动的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An algebraic approach to the Hubbard model
哈伯德模型的代数方法
- DOI:10.1016/j.physleta.2015.12.013
- 发表时间:2016
- 期刊:
- 影响因子:2.6
- 作者:De Leeuw M
- 通讯作者:De Leeuw M
Drinfeld J Presentation of Twisted Yangians
Drinfeld J 展示扭曲的杨吉斯 (Twisted Yangians)
- DOI:10.3842/sigma.2017.011
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Belliard S
- 通讯作者:Belliard S
REPRESENTATIONS OF TWISTED YANGIANS OF TYPES B, C, D: II
- DOI:10.1007/s00031-019-09514-x
- 发表时间:2017-08
- 期刊:
- 影响因子:0.7
- 作者:N. Guay;V. Regelskis;C. Wendlandt
- 通讯作者:N. Guay;V. Regelskis;C. Wendlandt
Nested Algebraic Bethe Ansatz for Open Spin Chains with Even Twisted Yangian Symmetry
- DOI:10.1007/s00023-018-0731-1
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:Allan Gerrard;N. Mackay;V. Regelskis
- 通讯作者:Allan Gerrard;N. Mackay;V. Regelskis
On boundary fusion and functional relations in the Baxterized affine Hecke algebra
Baxterized仿射Hecke代数中的边界融合和函数关系
- DOI:10.1063/1.4870597
- 发表时间:2014
- 期刊:
- 影响因子:1.3
- 作者:Babichenko A
- 通讯作者:Babichenko A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vidas Regelskis其他文献
Vidas Regelskis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 28.17万 - 项目类别:
Standard Grant
Conference: Algebraic Structures in Topology 2024
会议:拓扑中的代数结构 2024
- 批准号:
2348092 - 财政年份:2024
- 资助金额:
$ 28.17万 - 项目类别:
Standard Grant
Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
- 批准号:
23K03033 - 财政年份:2023
- 资助金额:
$ 28.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
$ 28.17万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
2401018 - 财政年份:2023
- 资助金额:
$ 28.17万 - 项目类别:
Continuing Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 28.17万 - 项目类别:
Continuing Grant
Nonlinear systems: algebraic structures and integrability
非线性系统:代数结构和可积性
- 批准号:
EP/X018784/1 - 财政年份:2023
- 资助金额:
$ 28.17万 - 项目类别:
Research Grant
Shifted Symplectic & Poisson Structures and their Quantisations in the context of Derived Algebraic Geometry
移辛
- 批准号:
2747173 - 财政年份:2022
- 资助金额:
$ 28.17万 - 项目类别:
Studentship
Application of noncommutative algebraic structures to cryptology
非交换代数结构在密码学中的应用
- 批准号:
22K03397 - 财政年份:2022
- 资助金额:
$ 28.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: Higher Categorical Structures in Algebraic Geometry
FRG:合作研究:代数几何中的更高范畴结构
- 批准号:
2152235 - 财政年份:2022
- 资助金额:
$ 28.17万 - 项目类别:
Standard Grant














{{item.name}}会员




