Photocatalytic bioethanol Production
光催化生物乙醇生产
基本信息
- 批准号:EP/K036769/1
- 负责人:
- 金额:$ 146.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the greatest challenges in the 21st century is to meet the global energy demand. Dwindling supplies of fossil fuel, combined with detrimental release of green house gases (GHG) have lead to the quest for renewable sources of fuel/energy with EU targets of 10% energy from renewable by 2020. Wind, solar, tidal and biofuel from crops (sugar cane and corn) are rapidly being introduced as alternative energy supplies. However, use of food crops has been widely criticised due to escalating population, food prices and deforestation for cultivation of energy crops hence there is an urgent need to develop more sustainable alternatives that do not impact global food production. One approach is the exploitation of significant quantities of available fibrous waste, which consist largely of cellulose. This waste, generated by agriculture, forestry and industry (e.g. paper manufacturing) can be exploited for biofuel production. It has been estimated that in the UK alone, annual excess straw exceeds 5.7 million Tonnes. This abundant waste resource, coupled to the fact that they are geographically evenly distributed across the country, could offer localised, low energy solutions for production of biofuel. As a carbohydrate cellulose consists of sugar molecules which can be fermented to provide ethanol but unlike starch the structure of cellulose prevents simple release of bound sugars. Previous attempts to harness cellulosic waste have used extreme treatment conditions to release the usable sugars. In existing pre-treatment procedures, enzymes, acid and alkali explosion, wet oxidation, steam explosion may be combined with high pressure and temperature. These procedures are expensive, energy demanding and generate hazardous waste.In this project, we propose a cost effective, low environmental impact approach to produce bioethanol from cellulosic waste by photocatalysis combined with fermentation in a single reactor. Photocatalysis is a process which uses a catalyst to accelerate a photoreaction by generating free radicals, and is commonly exploited in a range of applications (waste water treatment, antifouling paints, self-cleaning glass). Photocatalysis will be used to release sugars from the cellulose which will pass through a semi-permeable membrane where they will be fermented by yeast (or other selected microbes) to yield bioethanol. This approach has multiple advantages; catalyst is low cost, non-toxic, self cleaning, recoverable and activated by harvested natural light (augmented by low energy LED's where required). This integrated work programme is led by the experts in microbiology (Professor Linda Lawton - RGU), engineering (Professor Peter Robertson-RGU) and chemistry (Professor John Irvine - St Andrews) all of whom have a proven track record in application driven research.Key components of the work programme include; substrate targeted design and synthesis of novel catalysts, which will be screened for maximum liberation of fermentable sugars, screening of microbes for maximum production of bioethanol, design, fabrication, testing and optimisation of the parallel bench scale reactor. A key features of the reactor is the use of selective membranes to separate the liberated sugars from the catalyst. Under typical conditions the photocatalytic reaction would completely degrade compounds in contact with the catalyst hence liberated sugars will pass through the membrane where they will be available for microbial degradation. This novel reactor will be simple and scale-able facilitating implementation at local or municipal scale. For maximum versatility, the reactor will be optimised to produce bioethanol from an array of waste feed stocks from agriculture and industry. This multidisciplinary project will address the challenge of renewable energy with the development of a sustainable, cost effective, low environmental impact process for conversion of low value fibrous waste into high value bioethanol.
21世纪最大的挑战之一是满足全球能源需求。化石燃料供应的减少,加上温室气体 (GHG) 的有害排放,促使人们寻求可再生燃料/能源,欧盟的目标是到 2020 年 10% 的能源来自可再生能源。来自农作物(甘蔗和玉米)的风能、太阳能、潮汐能和生物燃料正在迅速被引入作为替代能源。然而,由于人口不断上升、粮食价格上涨以及为种植能源作物而砍伐森林,粮食作物的使用受到了广泛批评,因此迫切需要开发不影响全球粮食生产的更可持续的替代品。一种方法是利用大量可用的纤维废物,这些废物主要由纤维素组成。农业、林业和工业(例如造纸)产生的废物可用于生产生物燃料。据估计,仅在英国,每年剩余的秸秆就超过 570 万吨。这种丰富的废物资源,加上它们在地理上均匀分布在全国各地,可以为生物燃料的生产提供本地化的低能耗解决方案。作为碳水化合物,纤维素由糖分子组成,可以发酵提供乙醇,但与淀粉不同,纤维素的结构可防止结合糖的简单释放。以前利用纤维素废物的尝试使用了极端的处理条件来释放可用的糖。现有的预处理工艺中,酶、酸碱爆破、湿式氧化、蒸汽爆破等可能与高压、高温相结合。这些过程成本高昂、能源消耗大,并会产生危险废物。在该项目中,我们提出了一种成本效益高、环境影响低的方法,通过光催化与单个反应器中的发酵相结合,从纤维素废物中生产生物乙醇。光催化是一种使用催化剂通过产生自由基来加速光反应的过程,通常用于多种应用(废水处理、防污涂料、自洁玻璃)。光催化将用于从纤维素中释放糖,这些糖将穿过半透膜,在那里它们将被酵母(或其他选定的微生物)发酵以产生生物乙醇。这种方法有多种优点;催化剂成本低、无毒、自清洁、可回收并通过收集的自然光激活(在需要时通过低能量 LED 增强)。该综合工作计划由微生物学(Linda Lawton 教授 - RGU)、工程学(Peter Robertson 教授 -RGU)和化学(John Irvine 教授 - 圣安德鲁斯)专家领导,他们在应用驱动研究方面拥有良好的记录。该工作计划的关键组成部分包括:新型催化剂的底物靶向设计和合成,将筛选最大限度地释放可发酵糖,筛选微生物以最大限度地生产生物乙醇,设计、制造、测试和优化平行实验室规模反应器。该反应器的一个关键特征是使用选择性膜将释放的糖与催化剂分离。在典型条件下,光催化反应将完全降解与催化剂接触的化合物,因此释放的糖将穿过膜,在那里它们将被微生物降解。这种新颖的反应堆将是简单且可扩展的,有利于在地方或城市规模上的实施。为了实现最大的多功能性,反应器将进行优化,以利用来自农业和工业的一系列废物原料生产生物乙醇。这个多学科项目将通过开发可持续的、具有成本效益的、低环境影响的工艺来解决可再生能源的挑战,将低价值的纤维废物转化为高价值的生物乙醇。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photocatalytic OH radical formation and quantification over TiO2 P25: Producing a robust and optimised screening method
- DOI:10.1016/j.cclet.2018.04.022
- 发表时间:2018-06-01
- 期刊:
- 影响因子:9.1
- 作者:Buck, Caitlin;Skillen, Nathan;Robertson, Peter K. J.
- 通讯作者:Robertson, Peter K. J.
Mixing Regime Simulation and Cellulose Particle Tracing in a Stacked Frame Photocatalytic Reactor
- DOI:10.1016/j.cej.2016.12.016
- 发表时间:2017-04
- 期刊:
- 影响因子:15.1
- 作者:S. Nagarajan;L. Stella;L. Lawton;J. Irvine;Peter K. J. Robertson
- 通讯作者:S. Nagarajan;L. Stella;L. Lawton;J. Irvine;Peter K. J. Robertson
Using cellulose polymorphs for enhanced hydrogen production from photocatalytic reforming
- DOI:10.1039/c9se00377k
- 发表时间:2019-07-01
- 期刊:
- 影响因子:5.6
- 作者:Chang, Colby;Skillen, Nathan;Robertson, Peter K. J.
- 通讯作者:Robertson, Peter K. J.
Synthesis and applications of nanoporous perovskite metal oxides.
- DOI:10.1039/c7sc03920d
- 发表时间:2018-04-21
- 期刊:
- 影响因子:8.4
- 作者:Huang X;Zhao G;Wang G;Irvine JTS
- 通讯作者:Irvine JTS
Development and Optimization of an Immobilized Photocatalytic System within a Stacked Frame Photoreactor (SFPR) Using Light Distribution and Fluid Mixing Simulation Coupled with Experimental Validation
- DOI:10.1021/acs.iecr.8b05709
- 发表时间:2019-02-27
- 期刊:
- 影响因子:4.2
- 作者:Boyle, Con;Skillen, Nathan;Robertson, Peter K. J.
- 通讯作者:Robertson, Peter K. J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linda Lawton其他文献
Clinical benchmarking improves clinical paths: experience with coronary artery bypass grafting.
临床基准改善临床路径:冠状动脉旁路移植术的经验。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Rex V. Barnes;Linda Lawton;Deborah Briggs - 通讯作者:
Deborah Briggs
A new generation of biocides for control of crustacea in fish farms
- DOI:
10.1016/j.jphotobiol.2008.12.009 - 发表时间:
2009-04-02 - 期刊:
- 影响因子:
- 作者:
Peter K.J. Robertson;Kenneth D. Black;Morgan Adams;Kate Willis;Fraser Buchan;Heather Orr;Linda Lawton;Cathy McCullagh - 通讯作者:
Cathy McCullagh
Linda Lawton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Linda Lawton', 18)}}的其他基金
Mitigating Microbial Hazards - Eliminating HABs risks in salmon farms
减轻微生物危害 - 消除鲑鱼养殖场的有害细菌风险
- 批准号:
NE/X015459/1 - 财政年份:2023
- 资助金额:
$ 146.93万 - 项目类别:
Research Grant
In-reservoir destruction of Blue-Green Algae and their toxins
水库内蓝绿藻及其毒素的破坏
- 批准号:
EP/P029280/1 - 财政年份:2017
- 资助金额:
$ 146.93万 - 项目类别:
Research Grant
相似海外基金
High efficiency in the production of second-generation bioethanol by utilizing the fermentation promoting effect of Kampo medicine residue
利用汉方药渣的发酵促进作用高效生产第二代生物乙醇
- 批准号:
22H03784 - 财政年份:2022
- 资助金额:
$ 146.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bioethanol production using high-activity steam explosion and LED-irradiated growth-promoting wood-rotting fungus treatment
利用高活性蒸汽爆破和 LED 照射促生长木腐真菌处理生产生物乙醇
- 批准号:
20K19995 - 财政年份:2020
- 资助金额:
$ 146.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
HydroGreen Biofuel: Reducing the carbon footprint of highly efficient bioethanol production
HydroGreen 生物燃料:减少高效生物乙醇生产的碳足迹
- 批准号:
77077 - 财政年份:2020
- 资助金额:
$ 146.93万 - 项目类别:
Small Business Research Initiative
Market Assessment of a Novel Technology for Municipal Solid Waste to Bioethanol Production.
城市固体废物生物乙醇生产新技术的市场评估。
- 批准号:
524307-2018 - 财政年份:2018
- 资助金额:
$ 146.93万 - 项目类别:
Applied Research and Development Grants - Level 1
Development of eco-friendly and low cost process for the production of bioethanol
开发环保且低成本的生物乙醇生产工艺
- 批准号:
17K00669 - 财政年份:2017
- 资助金额:
$ 146.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic studies on innovative production process of biofuel by an extreme oligotroph
极端寡营养生物燃料创新生产工艺的基础研究
- 批准号:
16H04897 - 财政年份:2016
- 资助金额:
$ 146.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a novel rheological model and characterization of the mixing in bioethanol production from enzymatic hydrolysis of wheat straw
新型流变模型的开发和麦秆酶解生产生物乙醇混合的表征
- 批准号:
454222-2014 - 财政年份:2015
- 资助金额:
$ 146.93万 - 项目类别:
Postdoctoral Fellowships
Potential of Energy Crop Production for Bioethanol in Decontaminated Farmlands in Fukushima
福岛无污染农田中能源作物生产生物乙醇的潜力
- 批准号:
15H06661 - 财政年份:2015
- 资助金额:
$ 146.93万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
14CONFAP UNDERSTANDING CELL WALL STRUCTURE AND HYDROLYSIS OF TWO LEADING C4 BIOENERGY CROPS TO IMPROVE SECOND GENERATION BIOETHANOL PRODUCTION
14CONFAP 了解两种主要 C4 生物能源作物的细胞壁结构和水解,以提高第二代生物乙醇产量
- 批准号:
BB/M029182/1 - 财政年份:2015
- 资助金额:
$ 146.93万 - 项目类别:
Research Grant
14CONFAP UNDERSTANDING CELL WALL STRUCTURE AND HYDROLYSIS OF TWO LEADING C4 BIOENERGY CROPS TO IMPROVE SECOND GENERATION BIOETHANOL PRODUCTION
14CONFAP 了解两种主要 C4 生物能源作物的细胞壁结构和水解,以提高第二代生物乙醇产量
- 批准号:
BB/M029212/1 - 财政年份:2015
- 资助金额:
$ 146.93万 - 项目类别:
Research Grant