Quantum-enabled Enhancements in presence of Noise (QueEN)

存在噪声时的量子增强 (QueEN)

基本信息

  • 批准号:
    EP/K04057X/2
  • 负责人:
  • 金额:
    $ 92.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The written word is one of the greatest inventions of the human mind. From clay tablets, through papyrus, paper, punch-cards, onto the magnetic hard-disks of computers, each has represented a revolutionary method of recording information -- a transformation in human civilisation. Allied to each of these, the ways of processing and transferring information have undergone dramatic changes. The latest in this line of change and innovation is our digital information age. This phenomenal advance it is not the culmination of our endeavours, and yet greater advances can be achieved by harnessing the idea that information is not an ephemeral notion, but an integral part of physical reality.The best known theory describing physical reality is quantum physics, and this promises to be the next disruptive transformation in the process of recording, processing, transferring and even acquiring information. Quantum information science (QIS) has already demonstrated, in proof-of-principle experiments, the promise of super-efficient computation, unconditionally secure communication, super-precise measurements, and much more. These enhanced capabilities rely on the existence of quantum entanglement. Unfortunately, the laws of physics that underlie entanglement also make it extremely fragile and vulnerable. And this chasm divides the principle and practice of QIS.My research will bridge this gap - by designing quantum protocols that rely on resilient forms of quantum correlations, using them to develop quantum enhanced measurement and communication protocols. To learn more about the resilience of nonclassical correlations, I will study their evolution in the noisiest of environments - a biological molecule. It will inform our ability to manipulate and maintain nonclassical correlations in noisy environments, and allow us to study the role of quantum mechanics in biological processes.Robustness and scalability will be a central aspect in the design of the protocols developed in this project, and I will work closely with experimentalists to bring these advantages to the real world. I will concentrate on two particular applications. The first of these is quantum-enhanced precision measurements. It is known that quantum mechanics can measure single parameters with precisions impossible classically. Measuring several parameters simultaneously is however a very sophisticated problem, and forms the basis of sophisticated applications such as the development of microscopes and cameras. Not much is known about the quantum theory of measuring multiple parameters simultaneously, and my project will develop this mathematical theory. This will be followed by experiments demonstrating the quantum advantages promised by the theoretical developments - first in laboratory settings, and then in-situ biological samples.My second objective is to develop quantum communication protocols relying resilient quantum correlations that are less fragile than quantum entanglement. I will begin by developing the theoretical principles underpinning recently identified forms of robust, nonclassical correlations such as quantum discord, which can provide quantum enhanced performance. This will enable the optimal manipulation of these correlations to deliver quantum advantages in the real world.Finally, I will study nonclassical correlations in a very noisy biological system called a light-harvesting complex, a molecule transferring solar energy absorbed by photosynthetic organisms to a chemical reaction centre, being ~ 99% efficient. Clearer understanding of this process could have immense ramifications in developing artificial systems that can harness solar energy better than our best solar cells, which only operate at ~ 30% efficiency. Beyond this major technological and correspondingly societal change, my research will explore the intriguing question of whether quantum mechanical effects are directly used to confer selective advantage in life processes.
文字是人类最伟大的发明之一。从泥板,到纸莎草纸、打孔卡,再到计算机的磁性硬盘,每一种都代表着一种记录信息的革命性方法--人类文明的一次变革。与之相关联的是,处理和传递信息的方式也发生了巨大的变化。这一变革和创新的最新趋势是我们的数字信息时代。这一惊人的进步并不是我们努力的结果,但如果利用这样一种观念,即信息不是一个短暂的概念,而是物理现实的一个组成部分,就可以实现更大的进步。描述物理现实的最著名的理论是量子物理学,这有望成为记录、处理、传输甚至获取信息过程中的下一次颠覆性变革。量子信息科学(QIS)已经在原理验证实验中展示了超高效计算、无条件安全通信、超精确测量等方面的前景。这些增强的能力依赖于量子纠缠的存在。不幸的是,纠缠背后的物理定律也使它变得极其脆弱和脆弱。这一鸿沟将QIS的原理和实践分开。我的研究将弥合这一差距-通过设计依赖于弹性形式的量子关联的量子协议,利用它们来开发量子增强的测量和通信协议。为了更多地了解非经典关联的弹性,我将研究它们在最嘈杂的环境中的进化--一种生物分子。它将使我们有能力在嘈杂的环境中操纵和维持非经典关联,并使我们能够研究量子力学在生物过程中的作用。健壮性和可扩展性将是该项目开发的协议设计的中心方面,我将与实验者密切合作,将这些优势带到现实世界中。我将集中讨论两个特定的应用程序。第一个是量子增强的精确度测量。众所周知,量子力学可以测量单个参数,其精度是经典不可能的。然而,同时测量几个参数是一个非常复杂的问题,并形成了复杂应用的基础,如显微镜和照相机的开发。人们对同时测量多个参数的量子理论知之甚少,我的项目将发展这一数学理论。随后将进行实验,展示理论发展所承诺的量子优势-首先是在实验室环境中,然后是现场生物样本。我的第二个目标是开发依赖弹性量子关联的量子通信协议,这种协议比量子纠缠更不脆弱。我将首先阐述支持最近确定的强健、非经典关联形式的理论原理,例如量子不协调,它可以提供量子增强的性能。最后,我将在一个非常嘈杂的生物系统中研究非经典关联,称为捕光复合体,这是一种将光合作用有机体吸收的太阳能转移到化学反应中心的分子,效率~99%。更清楚地了解这一过程可能会对开发能够比我们最好的太阳能电池更好地利用太阳能的人工系统产生巨大的影响,因为我们最好的太阳能电池只能以~30%的效率运行。除了这种重大的技术和相应的社会变化,我的研究还将探索一个有趣的问题,即量子力学效应是否直接用于在生命过程中赋予选择性优势。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum enhanced estimation of diffusion
扩散的量子增强估计
  • DOI:
    10.48550/arxiv.1901.02497
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Branford D
  • 通讯作者:
    Branford D
Upper bounds on the Holevo Cramér-Rao bound for multiparameter quantum parametric and semiparametric estimation
多参数量子参数和半参数估计的 Holevo Cramér-Rao 界的上限
  • DOI:
    10.48550/arxiv.1911.11036
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Albarelli F
  • 通讯作者:
    Albarelli F
Quantum enhanced estimation of optical detector efficiencies
光学探测器效率的量子增强估计
Fundamental limits of quantum-secure covert optical sensing
Fundamental Quantum Limits of Multicarrier Optomechanical Sensors.
  • DOI:
    10.1103/physrevlett.121.110505
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    D. Branford;H. Miao;A. Datta
  • 通讯作者:
    D. Branford;H. Miao;A. Datta
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Animesh Datta其他文献

Approaching Quantum-Limited Metrology with Imperfect Detectors by Using Weak-Value Amplification
通过使用弱值放大来接近不完美探测器的量子限制计量
  • DOI:
    10.1103/physrevlett.125.080501
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Liang Xu;Zexuan Liu;Animesh Datta;George C. Knee;Jeff S. Lundeen;Yan-qing Lu;Lijian Zhang
  • 通讯作者:
    Lijian Zhang
Imprints of nonlinearity in radioactive gas Radon-222 expelled out of Bakreswar hot spring, India
印度巴克雷斯瓦尔温泉排出的放射性气体 Radon-222 的非线性印记
  • DOI:
    10.4401/ag-8174
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Chiranjit Maji;Nimagna Hazra;Animesh Datta;H. Chaudhuri;A. Iyengar
  • 通讯作者:
    A. Iyengar
Discord in the ranks
队伍中的不和谐
  • DOI:
    10.1038/nphoton.2012.269
  • 发表时间:
    2012-11-05
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Animesh Datta
  • 通讯作者:
    Animesh Datta

Animesh Datta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Animesh Datta', 18)}}的其他基金

Property Testing for Quantum Engineering (ProTeQE)
量子工程性能测试 (ProTeQE)
  • 批准号:
    EP/X018180/1
  • 财政年份:
    2023
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
Quantum-enhanced Interferometry for New Physics - Extension
新物理学的量子增强干涉测量 - 扩展
  • 批准号:
    ST/W006308/1
  • 财政年份:
    2022
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
Quantum light spectroscopy of complex quantum systems
复杂量子系统的量子光谱
  • 批准号:
    EP/V04818X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
Quantum-enhanced interferometry for new physics
新物理学的量子增强干涉测量
  • 批准号:
    ST/T006404/1
  • 财政年份:
    2020
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Research Grant
Quantum-enabled Enhancements in presence of Noise (QueEN)
存在噪声时的量子增强 (QueEN)
  • 批准号:
    EP/K04057X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Fellowship

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
STTR Phase I: Semantically-Enabled Augmented Reality for Manufacturing
STTR 第一阶段:用于制造的语义增强现实
  • 批准号:
    2335533
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 92.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了