Quantum-enhanced interferometry for new physics

新物理学的量子增强干涉测量

基本信息

  • 批准号:
    ST/T006404/1
  • 负责人:
  • 金额:
    $ 47.91万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Modern physics explains a stunning variety of phenomena from the smallest of scales to the largest and has already revolutionized the world! Lasers, semi-conductors, and transistors are at the core of our laptops, cellphones, and medical equipment. And every year, new novel quantum technologies are being developed within the National Quantum Technology Programme in the UK and throughout the world that impact our everyday life and the fundamental physics research that leads to new discoveries. Quantum states of light have recently improved the sensitivity of gravitational-wave detectors, whose detections to date have enthralled the public, and superconducting transition-edge-sensors are now used in astronomy experiments that make high-resolution images of the universe. Despite the successes of modern physics, several profound and challenging problems remain. Our consortium will use recent advances in quantum technologies to address two of the most pressing questions: (i) what is the nature of dark matter and (ii) how can quantum mechanics be united with Einstein's theory of relativity?The first research direction is motivated by numerous observations which suggest that a significant fraction of the matter in galaxies is not directly observed by optical telescopes. This mysterious matter interacts gravitationally but does not seem to emit any light. Understanding the nature of dark matter will shed light on the history of the universe and the formation of galaxies and will trigger new areas of research in fundamental and possibly applied physics. Despite its remarkable importance, the nature of dark matter is still a mystery. A number of state-of-the-art experiments world-wide are looking for dark matter candidates with no luck to date. The candidate we propose to search for are axions and axion-like-particles (ALPs). These particles are motivated by outstanding questions in particle physics and may account for a significant part, if not all, of dark matter. First, we propose an experiment which will rely on quantum states of light and will detect a dark matter signal or improve the existing limits on the axion-photon coupling by a few orders of magnitude for a large range of axion masses. Second, we will build a quantum sensor which will improve the sensitivity of the international 100-m long ALPS detector of axion-like-particles by a factor of 3 - 10.Our second line of research is devoted to the nature of space and time. Recent announcements of Google's Sycamore quantum computer and the detection of gravitational waves have provided additional evidence to the long list of successful experimental tests of quantum mechanics and Einstein's theory of relativity. But how can gravity be united with quantum mechanics? To seek answers that inform this question, we propose to study two quantum aspects of space-time. First, we will experimentally investigate the holographic principle, which states that the information content of a volume can be encoded on its boundary. We will exploit quantum states of light and build two ultra-sensitive laser interferometers that will investigate possible correlations between different regions of space with unprecedented sensitivity. Second, we will search for signatures of semiclassical gravity models that approximately solve the quantum gravity problems. We will build two optical interferometers and search for the first time for signatures of semiclassical gravity in the motion of the cryogenic silicon mirrors.Answering these challenging questions of fundamental physics with the aid of modern quantum technologies has the potential to open new horizons for physics research and to reach a new level of understanding of the world we live in. The proposed research directions share the common technological platform of quantum-enhanced interferometry and benefit from the diverse skills of the researchers involved in the programme.
现代物理学解释了各种令人惊叹的现象,从最小的尺度到最大的尺度,已经彻底改变了世界!激光、半导体和晶体管是我们笔记本电脑、手机和医疗设备的核心。每年,英国和世界各地的国家量子技术计划都在开发新的新型量子技术,这些技术影响着我们的日常生活,也影响着导致新发现的基础物理研究。光的量子状态最近提高了引力波探测器的灵敏度,到目前为止,这种探测器的探测令公众着迷,超导跃迁边缘传感器现在被用于制作高分辨率宇宙图像的天文学实验。尽管现代物理学取得了成功,但仍存在几个深刻而具有挑战性的问题。我们的联合体将利用量子技术的最新进展来解决两个最紧迫的问题:(I)暗物质的本质是什么;(Ii)量子力学如何与爱因斯坦的相对论相结合?第一个研究方向是由大量观测推动的,这些观测表明,星系中的相当大一部分物质不是通过光学望远镜直接观测到的。这种神秘的物质通过引力相互作用,但似乎不会发出任何光。了解暗物质的本质将揭示宇宙的历史和星系的形成,并将引发基础物理学和可能的应用物理学的新研究领域。尽管暗物质具有非凡的重要性,但它的性质仍然是一个谜。世界各地的一些最先进的实验正在寻找到目前为止还没有运气的暗物质候选者。我们建议寻找的候选粒子是轴子和轴子类粒子(Alps)。这些粒子是由粒子物理学中悬而未决的问题所驱动的,它们可能是暗物质的重要组成部分,如果不是全部的话。首先,我们提出了一个实验,它将依赖于光的量子态,并将探测到暗物质信号,或者将现有的轴子-光子耦合的限制提高几个数量级,以获得大范围的轴子质量。第二,我们将建造一个量子传感器,将国际上100米长的类轴子粒子阿尔卑斯山探测器的灵敏度提高3-10倍。我们的第二条研究线致力于空间和时间的性质。谷歌最近宣布的Sycamore量子计算机和引力波的探测,为量子力学和爱因斯坦相对论的一长串成功的实验测试提供了额外的证据。但是,引力如何与量子力学相结合呢?为了寻找这个问题的答案,我们建议研究时空的两个量子方面。首先,我们将通过实验研究全息原理,即体积的信息内容可以在其边界上编码。我们将利用光的量子态,建造两个超灵敏激光干涉仪,以前所未有的灵敏度调查空间不同区域之间可能存在的关联。其次,我们将寻找近似解决量子引力问题的半经典引力模型的签名。我们将建造两个光学干涉仪,并首次在低温硅镜的运动中寻找半经典引力的特征。借助现代量子技术回答这些具有挑战性的基础物理问题,可能会为物理研究开辟新的视野,并达到对我们生活的世界的新理解水平。拟议的研究方向共享量子增强干涉测量的共同技术平台,并受益于参与该计划的研究人员的不同技能。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Research campaign: Macroscopic quantum resonators (MAQRO)
研究活动:宏观量子谐振器(MAQRO)
  • DOI:
    10.1088/2058-9565/aca3cd
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Kaltenbaek, Rainer;Arndt, Markus;Aspelmeyer, Markus;Barker, Peter F.;Bassi, Angelo;Bateman, James;Belenchia, Alessio;Bergé, Joel;Braxmaier, Claus;Bose, Sougato
  • 通讯作者:
    Bose, Sougato
Exact eigenvalue order statistics for the reduced density matrix of a bipartite system
二分系统约化密度矩阵的精确特征值阶统计
  • DOI:
    10.1016/j.aop.2022.169107
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Sharmila B
  • 通讯作者:
    Sharmila B
Signatures of the quantum nature of gravity in the differential motion of two masses
  • DOI:
    10.1088/2058-9565/ac1adf
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    A. Datta;H. Miao
  • 通讯作者:
    A. Datta;H. Miao
Extracting electromagnetic signatures of spacetime fluctuations
  • DOI:
    10.1088/1361-6382/ad2970
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    B. Sharmila;Sander M. Vermeulen;A. Datta
  • 通讯作者:
    B. Sharmila;Sander M. Vermeulen;A. Datta
Tomographic entanglement indicators in frequency combs and Talbot carpets
频率梳和塔尔博特地毯中的层析纠缠指示器
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Animesh Datta其他文献

Approaching Quantum-Limited Metrology with Imperfect Detectors by Using Weak-Value Amplification
通过使用弱值放大来接近不完美探测器的量子限制计量
  • DOI:
    10.1103/physrevlett.125.080501
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Liang Xu;Zexuan Liu;Animesh Datta;George C. Knee;Jeff S. Lundeen;Yan-qing Lu;Lijian Zhang
  • 通讯作者:
    Lijian Zhang
Imprints of nonlinearity in radioactive gas Radon-222 expelled out of Bakreswar hot spring, India
印度巴克雷斯瓦尔温泉排出的放射性气体 Radon-222 的非线性印记
  • DOI:
    10.4401/ag-8174
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Chiranjit Maji;Nimagna Hazra;Animesh Datta;H. Chaudhuri;A. Iyengar
  • 通讯作者:
    A. Iyengar
Discord in the ranks
队伍中的不和谐
  • DOI:
    10.1038/nphoton.2012.269
  • 发表时间:
    2012-11-05
  • 期刊:
  • 影响因子:
    32.900
  • 作者:
    Animesh Datta
  • 通讯作者:
    Animesh Datta

Animesh Datta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Animesh Datta', 18)}}的其他基金

Property Testing for Quantum Engineering (ProTeQE)
量子工程性能测试 (ProTeQE)
  • 批准号:
    EP/X018180/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Research Grant
Quantum-enhanced Interferometry for New Physics - Extension
新物理学的量子增强干涉测量 - 扩展
  • 批准号:
    ST/W006308/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Research Grant
Quantum light spectroscopy of complex quantum systems
复杂量子系统的量子光谱
  • 批准号:
    EP/V04818X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Research Grant
Quantum-enabled Enhancements in presence of Noise (QueEN)
存在噪声时的量子增强 (QueEN)
  • 批准号:
    EP/K04057X/2
  • 财政年份:
    2015
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Fellowship
Quantum-enabled Enhancements in presence of Noise (QueEN)
存在噪声时的量子增强 (QueEN)
  • 批准号:
    EP/K04057X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Fellowship

相似国自然基金

噬菌体靶向肠道粪肠球菌提高帕金森病左旋多巴疗效的机制研究
  • 批准号:
    82371251
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PIC: Slow Wave Enhanced Electrooptically Tuned Michelson Interferometer Biosensor for On-Chip Dual Polarization Interferometry
合作研究:PIC:用于片上双偏振干涉测量的慢波增强型电光调谐迈克尔逊干涉仪生物传感器
  • 批准号:
    2210722
  • 财政年份:
    2022
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Standard Grant
Increasing the science reach for Quantum Enhanced Interferometry.
扩大量子增强干涉测量的科学范围。
  • 批准号:
    ST/W006456/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Research Grant
Collaborative Research: PIC: Slow Wave Enhanced Electrooptically Tuned Michelson Interferometer Biosensor for On-Chip Dual Polarization Interferometry
合作研究:PIC:用于片上双偏振干涉测量的慢波增强型电光调谐迈克尔逊干涉仪生物传感器
  • 批准号:
    2210707
  • 财政年份:
    2022
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Standard Grant
Quantum-enhanced Interferometry for New Physics - Extension
新物理学的量子增强干涉测量 - 扩展
  • 批准号:
    ST/W006308/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Research Grant
Extension to the 'Quantum-enhanced Interferometry for New Physics' programme
“新物理量子增强干涉测量”计划的扩展
  • 批准号:
    ST/W00643X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Research Grant
Quantum-enhanced Interferometry for New Physics: QI-extension proposal
新物理学的量子增强干涉测量:QI 扩展提案
  • 批准号:
    ST/W006375/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Research Grant
Quantum enhanced interferometry for new physics
新物理学的量子增强干涉测量
  • 批准号:
    2569982
  • 财政年份:
    2021
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Studentship
Optical Lattice Engineering for Enhanced Interferometry and Sensing with Yb Atoms
用于增强 Yb 原子干涉测量和传感的光学晶格工程
  • 批准号:
    2110164
  • 财政年份:
    2021
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Continuing Grant
Optical imaging of neural activity based on the Lorentz effect
基于洛伦兹效应的神经活动光学成像
  • 批准号:
    9977534
  • 财政年份:
    2020
  • 资助金额:
    $ 47.91万
  • 项目类别:
Quantum-enhanced interferometry for new physics
新物理学的量子增强干涉测量
  • 批准号:
    ST/T006609/1
  • 财政年份:
    2020
  • 资助金额:
    $ 47.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了