Towards Precision Experiments with Antihydrogen

迈向反氢精密实验

基本信息

  • 批准号:
    EP/P024734/1
  • 负责人:
  • 金额:
    $ 284.6万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The virtual absence of antimatter, and the corresponding dominance of matter, in the Universe today remains one of the biggest conundrums facing modern physics. Already in 1967, the famous Sakharov conditions described how such an asymmetric Universe could arise by requiring symmetry violations between matter and antimatter. However, up to the present, insufficient imbalance has been found to resolve this matter, and the puzzle remains. Our project will seek answers to this question by directly testing the common supposition that the properties of atoms made of antimatter are indistinguishable from their matter counterparts.To achieve this we have set out to apply the most powerful tools of precision measurements to the problem. Our approach is to trap antihydrogen, an atom made of an antiproton and a positron, and study its internal states using spectroscopic techniques developed in atomic physics. The underlying methodologies are the same as those that have given us atomic clocks; currently the most precise gauges in the human toolbox. Specifically, we will investigate the ground to first excited state transition in antihydrogen held in a magnetic trap to test the hypothesis that the frequency of this transition is identical to that of the hydrogen atom (matter). This transition has been determined with a staggering 14 decimal places of precision in hydrogen. In this project we plan to be the first to investigate the corresponding quantum jump in antihydrogen, and expect accuracies of around 9-10 decimal places for the initial experiment.In the second thread of this project we exploit our expertise in antihydrogen trapping to perform a text-book measurement of the gravitational acceleration of antimatter. This is a feat that is only possible because we can use the charge-neutral antihydrogen atom, which eliminates systematic errors that may arise if charged antiparticles are used. These difficulties originate from the size of the electrostatic interaction, which completely swamps the expected gravitational effects. Whilst the fundamental symmetries discussed above require both that antihydrogen is identical to hydrogen and that there are equal amounts of matter and antimatter in the Universe (i.e., the heart of earlier conundrum), the gravitational question is of a different nature. Our current understanding of gravity relies on Einstein's general theory of relativity, which is based on the postulate, known as the weak equivalence principle, that inertial (movement) mass is equal to gravitational mass. A given mass of antimatter, though potentially of a different nature to matter, should also obey this principle if our understanding of gravity is correct. Testing this experimentally is therefore of great interest to further our knowledge of gravity, which to date is incompatible with accepted quantum field theories.The antimatter research in this project tests the very foundations of physics: foundations that have, through decades of success, given us many insights into the physical world. In spite of these achievements, we still do not understand why there appears to be no bulk antimatter in the Universe. In this project we will search for tiny deviations from our current understanding. Past experience demonstrates that careful observation of Nature is the way to make breakthroughs and antihydrogen properties are compelling subjects due to the very specific, and thus far untested, predictions of their values. The risk of finding no clues on this path (though such an outcome would of course mean the exclusion of some possible explanations, and so is not devoid of interest) is outweighed by the spectacular and unquantifiable consequences that would follow if there were any measured difference between the behaviour of antihydrogen and hydrogen.
在今天的宇宙中,反物质的虚拟缺失以及相应的物质主导地位仍然是现代物理学面临的最大难题之一。早在1967年,著名的萨哈罗夫条件就描述了这样一个不对称的宇宙是如何通过要求物质和反物质之间的对称性破坏而产生的。然而,到目前为止,还没有找到足够的不平衡来解决这个问题,难题仍然存在。我们的项目将通过直接测试由反物质组成的原子的性质与其对应的物质的性质无法区分的常见假设来寻求这个问题的答案。为了实现这一点,我们已经着手将最强大的精确测量工具应用于这个问题。我们的方法是捕获反氢,一个由反质子和正电子组成的原子,并使用原子物理学中发展的光谱技术研究其内部状态。基本的方法论与原子钟相同,原子钟是目前人类工具箱中最精确的仪表。具体来说,我们将调查地面第一激发态的反氢磁阱中的过渡,以测试的假设,这种过渡的频率是相同的氢原子(物质)。这种转变已经在氢中以惊人的14位小数的精度确定。在这个项目中,我们计划首先研究反氢原子的量子跃迁,并期望在初始实验中达到小数点后9-10位的精确度。在这个项目的第二个线程中,我们将利用我们在反氢原子捕获方面的专业知识,对反物质的引力加速度进行教科书式的测量。这是一个壮举,这是唯一可能的,因为我们可以使用电荷中性的反氢原子,这消除了系统的错误,可能会出现,如果使用带电的反粒子。这些困难源于静电相互作用的大小,它完全淹没了预期的引力效应。虽然上面讨论的基本对称性要求反氢与氢相同,并且宇宙中存在等量的物质和反物质(即,早期难题的核心),引力问题是一个不同的性质。我们目前对引力的理解依赖于爱因斯坦的广义相对论,该理论基于被称为弱等效原理的假设,即惯性(运动)质量等于引力质量。一个给定质量的反物质,虽然可能具有与物质不同的性质,但如果我们对引力的理解是正确的,也应该遵守这一原则。因此,通过实验验证这一点对我们进一步了解引力有着极大的意义。迄今为止,引力与公认的量子场论是不相容的。这个项目中的反物质研究测试了物理学的基础:经过几十年的成功,这些基础给了我们许多关于物理世界的见解。尽管取得了这些成就,我们仍然不明白为什么宇宙中似乎没有大量反物质。在这个项目中,我们将寻找与我们目前理解的微小偏差。过去的经验表明,仔细观察自然是取得突破的途径,反氢性质是引人注目的主题,因为它们的价值非常具体,迄今为止尚未经过测试。在这条道路上找不到任何线索的风险(尽管这样的结果当然意味着排除了一些可能的解释,因此并不是没有兴趣)被如果反氢和氢的行为之间存在任何测量差异所带来的壮观而无法量化的后果所超过。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Antihydrogen accumulation for fundamental symmetry tests.
  • DOI:
    10.1038/s41467-017-00760-9
  • 发表时间:
    2017-09-25
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Ahmadi M;Alves BXR;Baker CJ;Bertsche W;Butler E;Capra A;Carruth C;Cesar CL;Charlton M;Cohen S;Collister R;Eriksson S;Evans A;Evetts N;Fajans J;Friesen T;Fujiwara MC;Gill DR;Gutierrez A;Hangst JS;Hardy WN;Hayden ME;Isaac CA;Ishida A;Johnson MA;Jones SA;Jonsell S;Kurchaninov L;Madsen N;Mathers M;Maxwell D;McKenna JTK;Menary S;Michan JM;Momose T;Munich JJ;Nolan P;Olchanski K;Olin A;Pusa P;Rasmussen CØ;Robicheaux F;Sacramento RL;Sameed M;Sarid E;Silveira DM;Stracka S;Stutter G;So C;Tharp TD;Thompson JE;Thompson RI;van der Werf DP;Wurtele JS
  • 通讯作者:
    Wurtele JS
Antihydrogen and Fundamental Physics
  • DOI:
    10.1007/978-3-030-51713-7
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Charlton;S. Eriksson;G. Shore
  • 通讯作者:
    M. Charlton;S. Eriksson;G. Shore
Closing in on the properties of antihydrogen
接近反氢的特性
Design and performance of a novel low energy multispecies beamline for an antihydrogen experiment
  • DOI:
    10.1103/physrevaccelbeams.26.040101
  • 发表时间:
    2023-04-21
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Baker, C. J.;Bertsche, W.;Wurtele, J. S.
  • 通讯作者:
    Wurtele, J. S.
Excitation of positronium: from the ground state to Rydberg levels
正电子素的激发:从基态到里德伯能级
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Niels Madsen其他文献

Distribution of brook lamprey (Lampetra planeri) ammocoetes in the sediment of a brook
  • DOI:
    10.1007/s10641-025-01712-9
  • 发表时间:
    2025-06-09
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Mathias Melchior;Niels Madsen
  • 通讯作者:
    Niels Madsen
Short-term discard survival and catch-related trauma in European plaice (emPleuronectes platessa/em) caught in the Baltic Sea by Danish seine during summer
夏季丹麦围网在波罗的海捕捞的欧洲比目鱼(Pleuronectes platessa)的短期丢弃存活率和与捕捞相关的创伤
  • DOI:
    10.1016/j.fishres.2024.107204
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Rasmus Ern;Andreas Faber;Niels Madsen
  • 通讯作者:
    Niels Madsen
Improving the effectiveness of escape windows in directed Norway lobster Nephrops norvegicus trawl fisheries
  • DOI:
    10.1007/s12562-012-0525-1
  • 发表时间:
    2012-06-30
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Niels Madsen;René Holst;Rikke Petri Frandsen;Ludvig A. Krag
  • 通讯作者:
    Ludvig A. Krag
Selectivity of fishing gears used in the Baltic Sea cod fishery
Improving selectivity of the Baltic cod pelagic trawl fishery: Experiments to assess the next step
  • DOI:
    10.1016/j.fishres.2010.01.011
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Niels Madsen;Vesa Tschernij;Renè Holst
  • 通讯作者:
    Renè Holst

Niels Madsen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Niels Madsen', 18)}}的其他基金

Precision Experiments with Antihydrogen
反氢精密实验
  • 批准号:
    EP/V00137X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Research Grant
Antiparticle beamline for experiments on matter antimatter symmetry
用于物质反物质对称性实验的反粒子束线
  • 批准号:
    EP/R025320/1
  • 财政年份:
    2018
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Research Grant
First Spectroscopy of Antihydrogen with Laser-Cooling assisted Antihydrogen Trapping
首次利用激光冷却辅助反氢捕获进行反氢光谱研究
  • 批准号:
    EP/K017373/1
  • 财政年份:
    2013
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Research Grant
Laser System for Enhanced Antihydrogen Trapping and Spectroscopy
用于增强反氢捕获和光谱学的激光系统
  • 批准号:
    EP/L005522/1
  • 财政年份:
    2013
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Research Grant
Antihydrogen trapping and plasma control - RESUBMISSION 8/5/07
反氢捕获和等离子体控制 - 重新提交 8/5/07
  • 批准号:
    EP/F019785/1
  • 财政年份:
    2007
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Research Grant

相似国自然基金

High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
  • 批准号:
    ST/W003880/2
  • 财政年份:
    2024
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Fellowship
Full mitigation of birefringence for high-precision optical experiments
完全缓解双折射,实现高精度光学实验
  • 批准号:
    24K00649
  • 财政年份:
    2024
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of High-Precision Calibration Method of Polarization Modulators for Next-Generation CMB Experiments
下一代CMB实验偏振调制器高精度校准方法的开发
  • 批准号:
    23H01202
  • 财政年份:
    2023
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Piecing together the Neutrino Mass Puzzle in Search of New Particles with Precision Oscillation Experiments and Quantum Technologies
通过精密振荡实验和量子技术拼凑中微子质量难题以寻找新粒子
  • 批准号:
    ST/W003880/1
  • 财政年份:
    2022
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Fellowship
High precision tests of the running of the weak mixing angle with the MOLLER and P2 experiments.
通过MOLLER和P2实验对弱混合角运行进行高精度测试。
  • 批准号:
    SAPPJ-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Subatomic Physics Envelope - Project
Precision Experiments to Study Fundamental Properties of Hadrons via Electromagnetic Probes at Jefferson Lab
杰斐逊实验室通过电磁探针研究强子基本性质的精密实验
  • 批准号:
    2111233
  • 财政年份:
    2021
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Continuing Grant
Converting local experiments to online using executables: A case study on memory precision
使用可执行文件将本地实验转换为在线实验:内存精度的案例研究
  • 批准号:
    562125-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 284.6万
  • 项目类别:
    University Undergraduate Student Research Awards
Precision Experiments with Antihydrogen
反氢精密实验
  • 批准号:
    EP/V00137X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Research Grant
High precision tests of the running of the weak mixing angle with the MOLLER and P2 experiments
通过MOLLER和P2实验对弱混合角运行进行高精度测试
  • 批准号:
    SAPPJ-2019-00049
  • 财政年份:
    2021
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Subatomic Physics Envelope - Project
Spin transparency as a new approach to precision tests of fundamental symmetries in polarization experiments at colliders and storage rings: theory and experiment
自旋透明度作为对撞机和存储环偏振实验中基本对称性精确测试的新方法:理论与实验
  • 批准号:
    465236767
  • 财政年份:
    2021
  • 资助金额:
    $ 284.6万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了