Challenges of Applied Algebraic Topology

应用代数拓扑的挑战

基本信息

  • 批准号:
    EP/L005719/1
  • 负责人:
  • 金额:
    $ 36.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

In this research we shall address mathematical challenges of understanding the topological properties of configuration spaces associated with linkages of new types, including linkages with telescopic legs and fixed-angle linkages, as well as multidimensional linkages which arise in algebraic geometry and mathematical physics and in some problems of statistics. The configuration spaces of linkages with telescopic legs (i.e. legs having variable lengths) are generically manifolds with corners and we plan using Morse theory techniques for finding relations between the metric parameters of linkages and the topological invariants of their configuration spaces. The fixed-angle linkages and their configuration spaces provide a good approximation to the variety of shapes of protein backbones and therefore information about topological properties of these spaces can be potentially used in the protein folding problem. Configuration spaces of multidimensional linkages are generically manifolds with singularities; their study represents significant mathematical challenges and requires new mathematical tools. We also plan to apply mixed probabilistic-topological techniques and study topological invariants of linkages (of various types) with random length parameters under the assumption that the number of bars of the linkage is large (tends to infinity). We hope to be able to generalise the previously obtained results of this type to new important classes of linkages. As part of this research we will also use the methods and results of applied algebraic topology to tackle a well-known classical topological problem known as the Whitehead conjecture. It was raised by J.H.C. Whitehead in 1941 and remains open despite multiple attempts of mathematicians. The Whitehead conjecture claims that a subcomplex of an aspherical 2-dimensional complex is also aspherical. Our recent results (2012) prove a probabilistic version of the conjecture. More precisely, we showed that aspherical 2-complexes produced randomly satisfy the Whitehead conjecture with probebility tending to one. In this research we shall try to exploit these probabilistic results hoping to obtain a full deterministic solution to the conjecture.
在这项研究中,我们将解决数学的挑战,理解与新型连杆机构相关的配置空间的拓扑性质,包括伸缩腿和固定角度的连杆机构,以及在代数几何和数学物理中出现的多维连杆机构和一些统计问题。具有伸缩腿(即具有可变长度的腿)的连杆机构的位形空间是具有角的一般流形,并且我们计划使用莫尔斯理论技术来寻找连杆机构的度量参数与其位形空间的拓扑不变量之间的关系。固定角连接和它们的构型空间提供了对蛋白质骨架的各种形状的良好近似,因此关于这些空间的拓扑性质的信息可以潜在地用于蛋白质折叠问题。多维连杆机构的位形空间一般是具有奇点的流形,它们的研究代表了重大的数学挑战,需要新的数学工具。我们还计划应用混合概率拓扑技术和研究拓扑不变量的连杆机构(各种类型)与随机长度参数的假设下,连杆机构的杆数是大的(趋于无穷大)。我们希望能够概括以前获得的结果,这种类型的新的重要类的联系。作为这项研究的一部分,我们还将使用应用代数拓扑的方法和结果来解决一个著名的经典拓扑问题,称为怀特海猜想。是J.H.C.提出的怀特黑德在1941年和仍然开放,尽管多次尝试的数学家。怀特海猜想声称非球面二维复形的子复形也是非球面的。我们最近的结果(2012)证明了该猜想的概率版本。更准确地说,我们证明了随机产生的非球面2-复合物满足Whitehead猜想,概率趋于1。在这项研究中,我们将试图利用这些概率结果,希望获得一个完整的确定性解决方案的猜想。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bredon cohomology and robot motion planning
Bredon 上同调和机器人运动规划
Fundamental groups of clique complexes of random graphs
随机图派系复合体的基本群
Geometry and topology of random 2-complexes
随机 2-复合体的几何和拓扑
The asphericity of random 2-dimensional complexes
随机二维复合体的非球面性
Large random simplicial complexes, III the critical dimension
大型随机单纯复形,III 临界维数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Farber其他文献

A random graph growth model
随机图增长模型
Vocab-Expander: A System for Creating Domain-Specific Vocabularies Based on Word Embeddings
Vocab-Expander:基于词嵌入创建特定领域词汇的系统
Periodic trajectories in 3-dimensional convex billiards
  • DOI:
    10.1007/s002290200273
  • 发表时间:
    2002-08-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Michael Farber;Serge Tabachnikov
  • 通讯作者:
    Serge Tabachnikov
Correction to: Parametrized topological complexity of collision‑free motion planning in the plane
MORSE–NOVIKOV CRITICAL POINT THEORY, COHN LOCALIZATION AND DIRICHLET UNITS
莫尔斯-诺维科夫临界点理论、COHN 定位和狄利克雷单位
  • DOI:
    10.1142/s0219199799000171
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Farber
  • 通讯作者:
    Michael Farber

Michael Farber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Farber', 18)}}的其他基金

DMS-EPSRC Topology of automated motion planning
自动运动规划的 DMS-EPSRC 拓扑
  • 批准号:
    EP/V009877/1
  • 财政年份:
    2021
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Challenges of Applied Algebraic Topology
应用代数拓扑的挑战
  • 批准号:
    EP/L005719/2
  • 财政年份:
    2014
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Tools of Applied Algebraic Topology
应用代数拓扑工具
  • 批准号:
    EP/H002383/2
  • 财政年份:
    2011
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Consolidated Support for EPSRC-LMS Durham Symposia
对 EPSRC-LMS 达勒姆研讨会的综合支持
  • 批准号:
    EP/G066736/1
  • 财政年份:
    2010
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Tools of Applied Algebraic Topology
应用代数拓扑工具
  • 批准号:
    EP/H002383/1
  • 财政年份:
    2010
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Applications of Algebraic Topology
代数拓扑的应用
  • 批准号:
    EP/D035759/1
  • 财政年份:
    2006
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant

相似国自然基金

普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
  • 批准号:
    12226506
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Combinatorial, Computational, and Applied Algebraic Geometry, Seattle 2022
组合、计算和应用代数几何,西雅图 2022
  • 批准号:
    2142724
  • 财政年份:
    2022
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
Applied Asymptotic Algebraic Combinatorics
应用渐近代数组合学
  • 批准号:
    2054488
  • 财政年份:
    2021
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
CAREER: Identifiability and Inference for Phylogenetic Networks using Applied Algebraic Geometry
职业:使用应用代数几何进行系统发育网络的可识别性和推理
  • 批准号:
    1945584
  • 财政年份:
    2020
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Continuing Grant
Modular Elliptic Curves Applied to Algebraic Number Theory
模椭圆曲线在代数数论中的应用
  • 批准号:
    528690-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: CDS&E: Applied Algebraic Statistics through R
合作研究:CDS
  • 批准号:
    1714752
  • 财政年份:
    2017
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Interagency Agreement
Collaborative Research: CDS&E: Applied Algebraic Statistics through R
合作研究:CDS
  • 批准号:
    1622449
  • 财政年份:
    2016
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Applied Algebraic Statistics through R
合作研究:CDS
  • 批准号:
    1622369
  • 财政年份:
    2016
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
Conference Travel Funding: Alpine Conference on Algebraic and Applied Topology
会议旅费资助:高山代数与应用拓扑会议
  • 批准号:
    1608596
  • 财政年份:
    2016
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
RTG: Algebraic Geometry, Applied Algebra, and Number Theory at the University of Wisconsin
RTG:威斯康星大学代数几何、应用代数和数论
  • 批准号:
    1502553
  • 财政年份:
    2015
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Continuing Grant
AG15: SIAM Conference on Applied Algebraic Geometry
AG15:SIAM​​ 应用代数几何会议
  • 批准号:
    1522597
  • 财政年份:
    2015
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了