DMS-EPSRC Topology of automated motion planning
自动运动规划的 DMS-EPSRC 拓扑
基本信息
- 批准号:EP/V009877/1
- 负责人:
- 金额:$ 46.92万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic topology uses various techniques allowing to reduce problems about flexible geometric objects to questions about rigid algebraic structures. Cohomological methods are currently among the most effective techniques which are used in situations motivated by problems of mathematical analysis, algebraic geometry, engineering and mathematical physics. In this research we shall use topological tools (and in particular methods of cohomology theory) to analyse algorithms of making decisions in situations when the outcome is a choice made from a continuum of possibilities rather than from a discrete set of values. In many such situations an algorithms can be interpreted as a section of a fibration and the topological concept of Schwartz genus of a fibration is a natural reflection of complexity of the task. In this research we shall develop mathematical methods to study algorithms for motion planning in engineering, algorithms for coordination of computations in distributed computing and algorithms for aggregation of personal preferences and reaching consensus in negotiations and their relations to social choice theory. Although these problems may appear to be very different at the first glance, they involve quite similar underlying mathematics and can be analysed by analogous methods. We shall develop theory of parametrised topological complexity which will be applicable in a variety of real life situations. The fundamental novelty in our approach consists in the assumption that the configuration space is "large" and is known to us only partially and, besides, the motion planning algorithm will operate without prior knowledge of the positions of the obstacles. Mathematically this will be reflected in the assumption that the actual configuration space is one of a large family of spaces parametrised by a base of a fibration. We shall also study motion planning algorithms in situations when motion of the system is constrained by technical limitations. This theory will be applicable in the context of distributed computing and will help to design computational algorithms for multiple computers performing simultaneous computations and sharing common resources. We shall tackle the Rationality Conjecture which predicts behaviour of the sequential topological complexity in the case of a large number of intermediate destinations. Besides, we shall further develop theory of geodesic motion planning where one requires that motion planning algorithms produce geodesic paths of minimal lengths. In the classical theory of social choice the preferences are assumed to be given on discrete sets of alternatives. We shall study a topological approach aiming to devise methods allowing to quantify the necessary failure of aggregation methods of various kind, along the lines of topological complexity and its quantitative variants, and to produce some positive results in this direction.
代数拓扑学使用各种技术,允许将有关柔性几何对象的问题简化为有关刚性代数结构的问题。上同调方法是目前最有效的技术之一,用于数学分析、代数几何、工程和数学物理等问题。在这项研究中,我们将使用拓扑工具(特别是上同调理论的方法)来分析在结果是从连续的可能性而不是从离散的值集做出选择的情况下做出决策的算法。在许多这样的情况下,算法可以被解释为纤维的一部分,纤维的施瓦茨属的拓扑概念是任务复杂性的自然反映。在这项研究中,我们将发展数学方法来研究工程中的运动规划算法、分布式计算中的协调计算算法、谈判中个人偏好和达成共识的聚合算法及其与社会选择理论的关系。虽然这些问题乍一看可能非常不同,但它们涉及相当相似的基础数学,可以用类似的方法进行分析。我们将发展参数化拓扑复杂性理论,这将适用于各种实际生活情况。我们的方法最基本的新颖之处在于假设构型空间是“大”的,并且我们只知道部分,此外,运动规划算法将在没有事先知道障碍物位置的情况下运行。在数学上,这将反映在假设实际位形空间是由一个颤振基参数化的大空间族中的一个。我们还将研究当系统的运动受到技术限制时的运动规划算法。这一理论将适用于分布式计算的背景,并将有助于设计多台计算机同时执行计算和共享公共资源的计算算法。我们将解决在大量中间目的地的情况下预测顺序拓扑复杂性行为的合理性猜想。此外,我们将进一步发展测地线运动规划理论,其中要求运动规划算法产生最小长度的测地线路径。在经典的社会选择理论中,偏好被假定是在离散的选择集上给出的。我们将研究一种拓扑方法,旨在设计方法,允许量化各种聚合方法的必要失败,沿着拓扑复杂性及其定量变量的路线,并在这个方向上产生一些积极的结果。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential parametrized motion planning and its complexity
顺序参数化运动规划及其复杂性
- DOI:10.1016/j.topol.2022.108256
- 发表时间:2022
- 期刊:
- 影响因子:0.6
- 作者:Farber M
- 通讯作者:Farber M
Sequential parametrized motion planning and its complexity, II
顺序参数化运动规划及其复杂性,II
- DOI:10.1016/j.topol.2023.108490
- 发表时间:2023
- 期刊:
- 影响因子:0.6
- 作者:Farber M
- 通讯作者:Farber M
The homology of random simplicial complexes in the multi-parameter upper model
多参数上层模型中随机单纯复形的同源性
- DOI:10.1007/s11856-023-2507-7
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Farber M
- 通讯作者:Farber M
Algorithmic Foundations of Robotics XV - Proceedings of the Fifteenth Workshop on the Algorithmic Foundations of Robotics
机器人算法基础 XV - 第十五届机器人算法基础研讨会论文集
- DOI:10.1007/978-3-031-21090-7_1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Farber M
- 通讯作者:Farber M
Large simplicial complexes: universality, randomness, and ampleness
大型单纯复形:普遍性、随机性和丰富性
- DOI:10.1007/s41468-023-00134-9
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Farber M
- 通讯作者:Farber M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Farber其他文献
A random graph growth model
随机图增长模型
- DOI:
10.1112/blms.12957 - 发表时间:
2023 - 期刊:
- 影响因子:0.9
- 作者:
Michael Farber;A. Gnedin;Wajid H. Mannan - 通讯作者:
Wajid H. Mannan
Vocab-Expander: A System for Creating Domain-Specific Vocabularies Based on Word Embeddings
Vocab-Expander:基于词嵌入创建特定领域词汇的系统
- DOI:
10.48550/arxiv.2308.03519 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Michael Farber;Nicholas Popovic - 通讯作者:
Nicholas Popovic
Periodic trajectories in 3-dimensional convex billiards
- DOI:
10.1007/s002290200273 - 发表时间:
2002-08-01 - 期刊:
- 影响因子:0.600
- 作者:
Michael Farber;Serge Tabachnikov - 通讯作者:
Serge Tabachnikov
Correction to: Parametrized topological complexity of collision‑free motion planning in the plane
- DOI:
10.1007/s10472-022-09821-2 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:1.000
- 作者:
Daniel C. Cohen;Michael Farber;Shmuel Weinberger - 通讯作者:
Shmuel Weinberger
MORSE–NOVIKOV CRITICAL POINT THEORY, COHN LOCALIZATION AND DIRICHLET UNITS
莫尔斯-诺维科夫临界点理论、COHN 定位和狄利克雷单位
- DOI:
10.1142/s0219199799000171 - 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Michael Farber - 通讯作者:
Michael Farber
Michael Farber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Farber', 18)}}的其他基金
Challenges of Applied Algebraic Topology
应用代数拓扑的挑战
- 批准号:
EP/L005719/1 - 财政年份:2014
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
Challenges of Applied Algebraic Topology
应用代数拓扑的挑战
- 批准号:
EP/L005719/2 - 财政年份:2014
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
Tools of Applied Algebraic Topology
应用代数拓扑工具
- 批准号:
EP/H002383/2 - 财政年份:2011
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
Consolidated Support for EPSRC-LMS Durham Symposia
对 EPSRC-LMS 达勒姆研讨会的综合支持
- 批准号:
EP/G066736/1 - 财政年份:2010
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
Tools of Applied Algebraic Topology
应用代数拓扑工具
- 批准号:
EP/H002383/1 - 财政年份:2010
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
Applications of Algebraic Topology
代数拓扑的应用
- 批准号:
EP/D035759/1 - 财政年份:2006
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
- 批准号:
EP/Y032489/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
- 批准号:
EP/Z531182/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
- 批准号:
EP/Y032942/1 - 财政年份:2024
- 资助金额:
$ 46.92万 - 项目类别:
Research Grant