Equipment Account: Integrated Thin Film Deposition and Analysis System
设备专案:综合薄膜沉积与分析系统
基本信息
- 批准号:EP/L011700/1
- 负责人:
- 金额:$ 5.98万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the past decade, there have been dramatic improvements in the techniques for epitaxial thin film growth, meaning that the qualities of some films are now approaching those of single crystals. Not only does this mean that it is possible to perform different types of measurements on highly complex materials (many devices are much more easily fabricated using thin films than with single crystals), but it is possible to create perfect interfaces between them by making artificial structures in which perfect single unit-cell layers with atomically-perfect surfaces are brought together in superlattice structures. For example, much recent interest has focused on the LaAlO3/SrTiO3 system in which a two-dimensional electron gas appears at the interface and can show both magnetic and superconducting properties.The deposition system being applied for will predominantly be used to grow ultrahigh quality oxide thin films both for basic science and more applied studies.The basis of the equipment requested here is pulsed laser deposition (PLD) which material is ablated from a target onto the growing film in an ultra-high vacuum chamber. To transform PLD into a precision growth technique capable of reliably creating the perfect crystal structures needed to study these materials systems, other systems need to be designed and properly integrated into a principal growth chamber. Firstly, in order to count the number of unit-cells deposited, and to stop precisely at the point at which a complete layer has been grown, a reflective high energy electron diffraction (RHEED) is required which is capable of working in the high gas pressures used for deposition. Secondly, in order to minimise structural and chemical disorder, sample growth needs to occur at higher-than-normal temperatures, it must be very carefully controlled and changed precisely and rapidly when going from one layer to another. This requires a laser heater. Finally, we need to be able to perform chemical and electronic studies of the materials grown without exposing them to contamination from the atmosphere and hence the samples need to be transferred under vacuum to a photoelectron spectroscopy chamber. This chamber is to be integrated into the complete system.Predominantly oxide materials and their interfaces will be studied for their huge range of potential novel science, but in a separate exploratory chamber some non-oxide intermetallic topological insulator compounds will be explored.On the oxide side, there are huge numbers of complex oxides which have amazing potential for novel functional properties but which never been explored. The intricate crystal structure of complex oxides can give rise to an enormous range of properties: for example the materials system SrRuxOy encompasses a metal (RuO2), a ferromagnet (SrRuO3), an unconventional superconductor (Sr2RuO4) and a potentially nematic electronic liquid (Sr3Ru2O7). The flip-side of this wealth of properties is an often extreme sensitivity of those properties to slight distortions of the structure, and as a result many of the most exciting properties are currently only observable in very high quality bulk single crystals. Furthermore, there is an even greater range of possibilities if oxides of two different compositions are interfaced together. Here, novel two-dimensional structures which do not exist in nature can be created and precise modulation of charge, strain and structural reconstructions can be realised. With the right tools, there is a whole new world of atom-by-atom materials discovery waiting to be explored.Ultimately, we aim to achieve amazing new properties in ultrathin structures, using an atom-by-atom approach. Unlike unsupported nanostructures, these are stable, controllable and encapsulated devices giving us novel electronic systems which can be exploited in the real world, for example in next-generation IT or in novel medical diagnostics.
在过去的十年里,外延薄膜的生长技术有了巨大的进步,这意味着一些薄膜的质量现在接近单晶的质量。这不仅意味着有可能对高度复杂的材料进行不同类型的测量(许多设备使用薄膜比使用单晶更容易制造),而且有可能通过制造人工结构在它们之间创造完美的界面,在这些人工结构中,具有原子完美表面的完美单胞层在超晶格结构中聚集在一起。例如,最近的兴趣集中在LaAlO3/SrTiO3体系上,其中二维电子气体出现在界面上,并且可以显示磁性和超导性。所应用的沉积系统将主要用于生长超高质量的氧化薄膜,用于基础科学和更多的应用研究。这里所要求的设备的基础是脉冲激光沉积(PLD),在超高真空室中将材料从目标上烧蚀到生长膜上。为了将PLD转化为一种精确的生长技术,能够可靠地创造研究这些材料系统所需的完美晶体结构,需要设计其他系统并将其适当地集成到主生长室中。首先,为了计算沉积的单元电池的数量,并精确地停止在一个完整的层已经生长的点上,需要一个反射高能电子衍射(RHEED),它能够在用于沉积的高压下工作。其次,为了尽量减少结构和化学紊乱,样品生长需要在高于正常温度下进行,必须非常仔细地控制,并且在从一层到另一层时精确而迅速地变化。这需要激光加热器。最后,我们需要能够在不将材料暴露于大气污染的情况下对其进行化学和电子研究,因此样品需要在真空下转移到光电子能谱室。这个室将被集成到整个系统中。主要的氧化物材料及其界面将因其巨大的潜在新科学范围而被研究,但在一个单独的探索室中,一些非氧化物金属间拓扑绝缘体化合物将被探索。在氧化物方面,有大量的复合氧化物,它们具有惊人的新功能特性的潜力,但从未被探索过。复杂氧化物的复杂晶体结构可以产生各种各样的特性:例如,材料系统SrRuxOy包含金属(RuO2),铁磁体(SrRuO3),非常规超导体(Sr2RuO4)和潜在的向列电子液体(Sr3Ru2O7)。这种丰富性质的另一面是,这些性质对结构的轻微扭曲往往极其敏感,因此,许多最令人兴奋的性质目前只能在非常高质量的块状单晶中观察到。此外,如果两种不同成分的氧化物结合在一起,则有更大的可能性。在这里,可以创建自然界中不存在的新型二维结构,并且可以实现电荷,应变和结构重构的精确调制。有了合适的工具,一个全新的原子材料发现世界等待着我们去探索。最终,我们的目标是利用原子对原子的方法,在超薄结构中实现惊人的新特性。与无支撑的纳米结构不同,这些稳定、可控和封装的设备为我们提供了可以在现实世界中使用的新型电子系统,例如下一代IT或新型医疗诊断。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Colloidal Synthesis and Optical Properties of Perovskite-Inspired Cesium Zirconium Halide Nanocrystals.
- DOI:10.1021/acsmaterialslett.0c00393
- 发表时间:2020-12-07
- 期刊:
- 影响因子:11.4
- 作者:Abfalterer A;Shamsi J;Kubicki DJ;Savory CN;Xiao J;Divitini G;Li W;Macpherson S;Gałkowski K;MacManus-Driscoll JL;Scanlon DO;Stranks SD
- 通讯作者:Stranks SD
Real-time in situ optical tracking of oxygen vacancy migration in memristors
- DOI:10.1038/s41928-020-00478-5
- 发表时间:2020-10-05
- 期刊:
- 影响因子:34.3
- 作者:Di Martino, Giuliana;Demetriadou, Angela;Baumberg, Jeremy J.
- 通讯作者:Baumberg, Jeremy J.
Ferroelectric Sm-doped BiMnO3 thin films with ferromagnetic transition temperature enhanced to 140 K.
- DOI:10.1021/am501351c
- 发表时间:2014-09-10
- 期刊:
- 影响因子:9.5
- 作者:Choi, Eun-Mi;Kursumovic, Ahmed;Lee, Oon Jew;Kleibeuker, Josee E.;Chen, Aiping;Zhang, Wenrui;Wang, Haiyan;MacManus-Driscoll, Judith L.
- 通讯作者:MacManus-Driscoll, Judith L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Judith Driscoll其他文献
The phase transition and phase stability of magnetoelectric BiFeO<sub>3</sub>
- DOI:
10.1016/j.msea.2006.01.117 - 发表时间:
2006-11-25 - 期刊:
- 影响因子:
- 作者:
M.C. Li;Judith Driscoll;L.H. Liu;L.C. Zhao - 通讯作者:
L.C. Zhao
Judith Driscoll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Judith Driscoll', 18)}}的其他基金
ECCS - EPSRC Development of uniform, low power, high density resistive memory by vertical interface and defect design
ECCS - EPSRC 通过垂直接口和缺陷设计开发统一、低功耗、高密度电阻式存储器
- 批准号:
EP/T012218/1 - 财政年份:2020
- 资助金额:
$ 5.98万 - 项目类别:
Research Grant
Precision Manufacturing of Flexible CMOS
柔性CMOS精密制造
- 批准号:
EP/P027032/1 - 财政年份:2017
- 资助金额:
$ 5.98万 - 项目类别:
Research Grant
Nanocomposite Oxide Thin Films For Novel Ionotronic Magnetoelectrics
用于新型离子电子磁电学的纳米复合氧化物薄膜
- 批准号:
EP/N004272/1 - 财政年份:2015
- 资助金额:
$ 5.98万 - 项目类别:
Research Grant
Novel Interface and Strain Control in Epitaxial Nanocomposite Films
外延纳米复合薄膜中的新型界面和应变控制
- 批准号:
EP/H047867/1 - 财政年份:2011
- 资助金额:
$ 5.98万 - 项目类别:
Research Grant
NSF - Novel Strain Control in Thick Epitaxial Nanocomposite Films
NSF - 厚外延纳米复合薄膜中的新型应变控制
- 批准号:
EP/F028563/1 - 财政年份:2008
- 资助金额:
$ 5.98万 - 项目类别:
Research Grant
Near Room Temperature Growth of Dilute Magnetic Semiconductor Oxides: Visiting Fellowship for Dr. Ying Lin Liu
稀磁半导体氧化物的近室温生长:刘英林博士的访问学者
- 批准号:
EP/D039894/1 - 财政年份:2006
- 资助金额:
$ 5.98万 - 项目类别:
Research Grant
Advancing the Commercialisation Potential of HLPE Superconducting Conductors
提升 HLPE 超导导体的商业化潜力
- 批准号:
EP/D503167/1 - 财政年份:2006
- 资助金额:
$ 5.98万 - 项目类别:
Research Grant
相似海外基金
Industrial CASE Account - Durham University 2024
工业案例账户 - 杜伦大学 2024
- 批准号:
EP/Z530748/1 - 财政年份:2024
- 资助金额:
$ 5.98万 - 项目类别:
Training Grant
Industrial CASE Account - University of Nottingham 2024
工业案例账户 - 诺丁汉大学 2024
- 批准号:
EP/Z530840/1 - 财政年份:2024
- 资助金额:
$ 5.98万 - 项目类别:
Training Grant
Industrial CASE Account - University College London 2024
工业案例账户 - 伦敦大学学院 2024
- 批准号:
EP/Z530967/1 - 财政年份:2024
- 资助金额:
$ 5.98万 - 项目类别:
Training Grant
Industrial CASE Account - University of Bristol 2024
工业案例账户 - 布里斯托大学 2024
- 批准号:
EP/Z530992/1 - 财政年份:2024
- 资助金额:
$ 5.98万 - 项目类别:
Training Grant
Industrial CASE Account - University of East Anglia 2024
工业案例账户 - 东安格利亚大学 2024
- 批准号:
EP/Z531017/1 - 财政年份:2024
- 资助金额:
$ 5.98万 - 项目类别:
Training Grant
Industrial CASE Account - University of Exeter 2024
工业案例账户 - 埃克塞特大学 2024
- 批准号:
EP/Z531030/1 - 财政年份:2024
- 资助金额:
$ 5.98万 - 项目类别:
Training Grant
Industrial CASE Account - Loughborough University 2024
工业案例账户 - 拉夫堡大学 2024
- 批准号:
EP/Z530785/1 - 财政年份:2024
- 资助金额:
$ 5.98万 - 项目类别:
Training Grant
Industrial CASE Account - Queen's University of Belfast 2024
工业案例账户 - 贝尔法斯特女王大学 2024
- 批准号:
EP/Z530803/1 - 财政年份:2024
- 资助金额:
$ 5.98万 - 项目类别:
Training Grant
Industrial CASE Account - University of Warwick 2024
工业案例账户 - 华威大学 2024
- 批准号:
EP/Z530918/1 - 财政年份:2024
- 资助金额:
$ 5.98万 - 项目类别:
Training Grant
Industrial CASE Account - The University of Manchester 2024
工业案例账户 - 曼彻斯特大学 2024
- 批准号:
EP/Z530955/1 - 财政年份:2024
- 资助金额:
$ 5.98万 - 项目类别:
Training Grant