New insights in quantum algorithms and complexity

量子算法和复杂性的新见解

基本信息

  • 批准号:
    EP/L021005/1
  • 负责人:
  • 金额:
    $ 107.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

A quantum computer is a machine built to use the mysterious principles of quantum mechanics to achieve an advantage in some task over any standard ("classical") computer. Large-scale quantum computers have not yet been built; however, an international effort is currently underway to do so. Much theoretical work has also been carried out to understand the power of quantum computation, and in particular, quantum algorithms have been developed for certain problems that outperform any possible algorithm running on a classical computer. These problems include breaking cryptographic codes (such as the RSA code which underlies Internet security), certain database search problems, and efficient simulation of quantum mechanical systems (with applications including design of medicinal compounds and novel materials).One reason that the study of quantum computing is so fascinating is that, as well as having practical applications like this, it enables us to obtain a deeper understanding of nature. As it appears that quantum mechanics is the physical theory on which our universe is based, understanding what a quantum computer can do is nothing less than understanding the computational power of the universe.This project aims to find a deeper understanding of what it is about certain problems which means that there is an efficient quantum algorithm to solve them. In particular, the project will develop new algorithms and protocols for quantum computers to obtain dramatic efficiency improvements over classical computation. Some of these algorithms could be tested experimentally in the near future. The proposal is divided into three themes.The first theme will find new quantum algorithms, communication protocols and data structures. For example, super-efficient quantum algorithms will be developed for determining whether an object has some property, or is very far away from having that property. One problem of this nature would be to determine whether a computer network is connected or very far from connected, by looking at only a few, randomly chosen, links between computers. It is by now fairly well understood which problems like this have fast solutions on a classical computer. However, quantum computers might be able to achieve dramatic speed-ups for certain problems of this type. Efficient algorithms for discrete problems (e.g. concerning graphs and codes) will also be developed using the exciting new technique known as quantum walks, and finally the question of whether there exist quantum data structures which are more efficient than any classical data structure will be attacked.In the second theme, ideas from quantum computing will be used to study the complexity of problems from quantum physics and quantum chemistry. On the one hand, new quantum algorithms will be developed that allow quantum computers to solve practically important problems from these fields more efficiently than is possible classically. On the other, intractability of certain problems in this area will be proven, which will enable practitioners (such as physicists and chemists) to determine when problems they want to solve are actually intrinsically hard. Ideas from quantum computing are thus a helpful tool even without having access to a large-scale quantum computer.Finally, the third theme will develop new underlying mathematical technology in order to solve the difficult problems thrown up by the first two themes. These include developments in the theory of "hypercontractivity", which has recently been an essential tool in many important results in theoretical computer science, and new mathematical techniques to find tighter bounds on the abilities of quantum computation.Taken together, these results will mark a significant leap forward in our understanding of the power of quantum computers.
量子计算机是一种机器,它利用量子力学的神秘原理,在某些任务中取得比任何标准(“经典”)计算机更大的优势。大规模量子计算机尚未建成;然而,目前正在进行一项国际努力来做到这一点。为了理解量子计算的力量,人们也进行了大量的理论工作,特别是针对某些问题开发了量子算法,这些算法的性能超过了在经典计算机上运行的任何可能的算法。这些问题包括破解密码(例如构成互联网安全基础的RSA代码)、某些数据库搜索问题以及量子力学系统的有效模拟(应用包括药物化合物和新材料的设计)。量子计算研究如此引人入胜的一个原因是,除了具有这样的实际应用之外,它还使我们能够更深入地了解自然。由于量子力学似乎是我们宇宙所基于的物理理论,理解量子计算机的功能无异于理解宇宙的计算能力。这个项目旨在更深入地理解某些问题的原因,这意味着有一种有效的量子算法来解决这些问题。特别是,该项目将为量子计算机开发新的算法和协议,以获得比经典计算显著提高的效率。其中一些算法可能会在不久的将来进行实验测试。该提案分为三个主题。第一个主题是寻找新的量子算法、通信协议和数据结构。例如,将开发超高效的量子算法来确定一个物体是否具有某些属性,或者距离该属性非常远。这种性质的一个问题将是通过只查看计算机之间的几个随机选择的链路来确定计算机网络是连接的还是远离连接的。到目前为止,人们已经很好地理解了这样的问题在经典计算机上有快速的解决方案。然而,量子计算机也许能够实现这种类型的某些问题的戏剧性加速。在第二个主题中,来自量子计算的思想将被用来研究量子物理和量子化学问题的复杂性。一方面,新的量子算法将被开发出来,使量子计算机能够比经典算法更有效地解决这些领域中的实际重要问题。另一方面,将证明这一领域某些问题的难解性,这将使从业者(如物理学家和化学家)能够确定他们想要解决的问题何时实际上是困难的。因此,即使没有大规模的量子计算机,量子计算的想法也是一个有用的工具。最后,第三个主题将开发新的底层数学技术,以解决前两个主题提出的难题。其中包括“超收缩”理论的发展,这是最近理论计算机科学中许多重要结果的基本工具,以及找到更严格的量子计算能力界限的新数学技术。这些结果加在一起,将标志着我们对量子计算机能力的理解向前迈进了一大步。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations
  • DOI:
    10.1103/physrevlett.117.080501
  • 发表时间:
    2016-08-18
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bremner, Michael J.;Montanaro, Ashley;Shepherd, Dan J.
  • 通讯作者:
    Shepherd, Dan J.
Number of superclasses of four-qubit entangled states under the inductive entanglement classification
  • DOI:
    10.1103/physreva.95.022329
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Miriam Backens
  • 通讯作者:
    Miriam Backens
Complexity Classification of Two-Qubit Commuting Hamiltonians
二量子位通勤哈密顿量的复杂性分类
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bouland A
  • 通讯作者:
    Bouland A
A Simplified Stabilizer ZX-calculus
  • DOI:
    10.4204/eptcs.236.1
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miriam Backens;S. Perdrix;Quanlong Wang
  • 通讯作者:
    Miriam Backens;S. Perdrix;Quanlong Wang
Improved bounds on Fourier entropy and min-entropy
改进傅里叶熵和最小熵的界限
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashley Montanaro其他文献

Unbounded-error quantum query complexity, in Proceedings of 19th International Symposium on Algorithms and Computation (ISAAC2008)
无界错误量子查询复杂性,第 19 届国际算法与计算研讨会论文集 (ISAAC2008)
Quantum algorithms: an overview
量子算法:概述
  • DOI:
    10.1038/npjqi.2015.23
  • 发表时间:
    2016-01-12
  • 期刊:
  • 影响因子:
    8.300
  • 作者:
    Ashley Montanaro
  • 通讯作者:
    Ashley Montanaro
Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana
Quantum circuits and low-degree polynomials over F2
Quantum computational supremacy
量子计算霸权
  • DOI:
    10.1038/nature23458
  • 发表时间:
    2017-09-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Aram W. Harrow;Ashley Montanaro
  • 通讯作者:
    Ashley Montanaro

Ashley Montanaro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashley Montanaro', 18)}}的其他基金

QuantAlgo: Quantum algorithms and applications
QuantAlgo:量子算法和应用
  • 批准号:
    EP/R043957/1
  • 财政年份:
    2018
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Research Grant
Quantum algorithms for optimised planning/scheduling applications
用于优化规划/调度应用的量子算法
  • 批准号:
    EP/R020426/1
  • 财政年份:
    2017
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Research Grant
New directions in quantum algorithms
量子算法的新方向
  • 批准号:
    EP/G049416/2
  • 财政年份:
    2010
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Fellowship
New directions in quantum algorithms
量子算法的新方向
  • 批准号:
    EP/G049416/1
  • 财政年份:
    2009
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Fellowship

相似国自然基金

Behavioral Insights on Cooperation in Social Dilemmas
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国优秀青年学者研究基金项目

相似海外基金

CAREER: From Quantum to Classical and Back: Bringing 2D Spectroscopy Insights into Focus
职业生涯:从量子到经典再回归:聚焦二维光谱学见解
  • 批准号:
    2236625
  • 财政年份:
    2023
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Standard Grant
Molecular insights into food physical property revealed by quantum beam structural analysis in conjunction with rheology measurements
量子束结构分析结合流变学测量揭示了对食品物理特性的分子洞察
  • 批准号:
    22K05511
  • 财政年份:
    2022
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum gravity insights into quantum information theory
量子引力对量子信息论的见解
  • 批准号:
    557657-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Postdoctoral Fellowships
Quantum gravity insights into quantum information theory
量子引力对量子信息论的见解
  • 批准号:
    557657-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Postdoctoral Fellowships
Quantum Chemistry - Fundamental Insights and a Tool for Addressing Materials, Energy and Environmental Challenges
量子化学——解决材料、能源和环境挑战的基本见解和工具
  • 批准号:
    RGPIN-2017-04966
  • 财政年份:
    2021
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanistic Insights into metal- and enzyme-catalyzed reactions using hybrid quantum chemical and information science approaches
使用混合量子化学和信息科学方法对金属和酶催化反应的机理洞察
  • 批准号:
    21K05016
  • 财政年份:
    2021
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Insights into Structure-Function Relationships of Matrix Metalloproteinase-1 from Computational and Experimental Studies
从计算和实验研究中洞察基质金属蛋白酶-1 的结构-功能关系
  • 批准号:
    10730598
  • 财政年份:
    2020
  • 资助金额:
    $ 107.19万
  • 项目类别:
Quantum Chemistry - Fundamental Insights and a Tool for Addressing Materials, Energy and Environmental Challenges
量子化学——解决材料、能源和环境挑战的基本见解和工具
  • 批准号:
    RGPIN-2017-04966
  • 财政年份:
    2020
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Chemistry - Fundamental Insights and a Tool for Addressing Materials, Energy and Environmental Challenges
量子化学——解决材料、能源和环境挑战的基本见解和工具
  • 批准号:
    RGPIN-2017-04966
  • 财政年份:
    2019
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Chemistry - Fundamental Insights and a Tool for Addressing Materials, Energy and Environmental Challenges
量子化学——解决材料、能源和环境挑战的基本见解和工具
  • 批准号:
    RGPIN-2017-04966
  • 财政年份:
    2018
  • 资助金额:
    $ 107.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了