Constraint Network Tractability: Beyond Structure and Language

约束网络的可处理性:超越结构和语言

基本信息

  • 批准号:
    EP/L021226/1
  • 负责人:
  • 金额:
    $ 14.57万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The Constraint Satisfaction Problem (or CSP) is a general framework for all kinds of computational problems that involve searching for a set of values that together satisfy some specified restrictions, known as constraints. Such problems are encountered in a very large range of applications, including classic problems in operations research and artificial intelligence, many forms of scheduling and planning problems, and problems in cryptography, computer vision, chemical synthesis and gene matching. The Maximum Constraint Satisfaction Problem (or Max-CSP) is a generalisation of the CSP whose range of application is even greater: it includes many combinatorial optimisation problems that are not easily expressed in the basic CSP framework. In this problem the aim is to find an assignment of values to the variables of the problem which maximises the number of satisfied constraints.Both the CSP and the Max-CSP are NP-hard, which means that it is unlikely that there exist efficient general algorithms that can solve all instances of such problems. Thus one can try to design heuristics which perform well on certain kinds of instances, or else one can restrict the general problem in order to obtain a more tractable problem (for example, a problem which can be solved in polynomial time). Most of our research is concerned with the second approach: we try to identify the restrictions on constraint satisfaction problems which are sufficient to ensure they can be solved efficiently.In this project we aim to find a novel approach to defining such restrictions that is more powerful than anything that has been considered before, and allows us to identify many more kinds of tractable problems. In the past, the only kinds of tractable problems that have been considered fall into two distinct classes. In the first, the constraints are arbitrary, but they can only be applied to the variables in limited ways. In the second, the constraints fall into a restricted family of constraint types, but they can be applied to the variables in an arbitrary way. Both of these kinds of restrictions have led to interesting mathematical theories, and some important special cases which can be solved efficiently. However, we believe that it is now possible to combine these approaches and obtain a much more general theory that unifies the previous approaches, and provides a more flexible way to define the restrictions on problems.By developing this more powerful approach we hope to be able to describe much more accurately which kinds of constraint problems can be solved efficiently, and to use this information to improve the available software tools and analytical techniques.
约束满足问题(英语:Constraint Satisfaction Problem,缩写为CSP)是一个通用的计算问题框架,它涉及到寻找一组值,这些值一起满足一些特定的约束,称为约束。这样的问题在非常广泛的应用中遇到,包括运筹学和人工智能中的经典问题,许多形式的调度和规划问题,以及密码学,计算机视觉,化学合成和基因匹配中的问题。最大约束满足问题(Max-CSP)是CSP的一个推广,它的应用范围甚至更大:它包括许多在基本CSP框架中不容易表达的组合优化问题。在这个问题中,我们的目标是找到一个分配给问题变量的值,使满足的约束数最大化。CSP和Max-CSP都是NP-困难的,这意味着不太可能存在有效的通用算法来解决所有的问题。因此,人们可以尝试设计在某些情况下表现良好的算法,或者可以限制一般问题以获得更易处理的问题(例如,可以在多项式时间内解决的问题)。我们的研究主要集中在第二种方法上:我们试图识别约束满足问题的约束条件,这些约束条件足以确保问题能够有效地解决。在这个项目中,我们的目标是找到一种新的方法来定义这样的约束条件,这种方法比以前考虑过的任何方法都更强大,并且允许我们识别更多种类的易处理问题。在过去,被认为是唯一的易处理的问题分为两个不同的类。在第一种情况下,约束是任意的,但它们只能以有限的方式应用于变量。在第二种情况下,约束属于约束类型的受限家族,但它们可以以任意方式应用于变量。这两种限制都导致了有趣的数学理论,以及一些可以有效解决的重要特例。然而,我们相信,现在有可能将这些方法联合收割机并获得一个更普遍的理论,该理论统一了以前的方法,并提供了一种更灵活的方法来定义问题的限制。通过开发这种更强大的方法,我们希望能够更准确地描述哪种约束问题可以有效地解决,并利用这些信息改进现有的软件工具和分析技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Singleton Arc Consistency for CSPs Defined by Monotone Patterns.
关于单调模式定义的 CSP 的单例弧一致性。
  • DOI:
    10.1007/s00453-018-0498-2
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Carbonnel C
  • 通讯作者:
    Carbonnel C
Binary constraint satisfaction problems defined by excluded topological minors
由排除的拓扑次要定义的二元约束满足问题
  • DOI:
    10.1016/j.ic.2018.09.013
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Cohen D
  • 通讯作者:
    Cohen D
Graph Structures for Knowledge Representation and Reasoning - 6th International Workshop, GKR 2020, Virtual Event, September 5, 2020, Revised Selected Papers
知识表示和推理的图结构 - 第六届国际研讨会,GKR 2020,虚拟活动,2020 年 9 月 5 日,修订后的精选论文
  • DOI:
    10.1007/978-3-030-72308-8_9
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cohen D
  • 通讯作者:
    Cohen D
Tractability in constraint satisfaction problems: a survey
  • DOI:
    10.1007/s10601-015-9198-6
  • 发表时间:
    2015-07
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Clément Carbonnel;Martin C. Cooper
  • 通讯作者:
    Clément Carbonnel;Martin C. Cooper
Variable and value elimination in binary constraint satisfaction via forbidden patterns
  • DOI:
    10.1016/j.jcss.2015.02.001
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Cohen;Martin C. Cooper;Guillaume Escamocher;Stanislav Živný
  • 通讯作者:
    D. Cohen;Martin C. Cooper;Guillaume Escamocher;Stanislav Živný
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Jeavons其他文献

A Polynomial-Time Solution to Constraint Satisfaction Problems by Neural-like P Systems
类神经 P 系统约束满足问题的多项式时间解
New Tractable Classes From Old
  • DOI:
    10.1023/a:1025623111033
  • 发表时间:
    2003-07-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    David Cohen;Peter Jeavons;Richard Gault
  • 通讯作者:
    Richard Gault
How to Determine the Expressive Power of Constraints
  • DOI:
    10.1023/a:1009890709297
  • 发表时间:
    1999-05-01
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Peter Jeavons;David Cohen;Marc Gyssens
  • 通讯作者:
    Marc Gyssens

Peter Jeavons的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Jeavons', 18)}}的其他基金

The complexity of valued constraints
有价值约束的复杂性
  • 批准号:
    EP/F01161X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Research Grant
Groebner Basis Techniques for Constraint Satisfaction Problems
约束满足问题的 Groebner 基础技术
  • 批准号:
    EP/D032636/1
  • 财政年份:
    2006
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Research Grant

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Studentship
A national network for magnetic resonance spectroscopy
国家磁共振波谱网络
  • 批准号:
    LE240100050
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
EukaryoticHopanoids: Deciphering the regulatory network behind unusual lipids in eukaryotes
真核Hopanoids:破译真核生物异常脂质背后的调控网络
  • 批准号:
    EP/Y024702/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Fellowship
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
  • 批准号:
    EP/Y03693X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Research Grant
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
  • 批准号:
    EP/X036006/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Research Grant
IUCRC Phase I University of Wisconsin-Milwaukee: Center for Concrete Advancement Network (CAN), Lead Site
IUCRC 第一阶段威斯康星大学密尔沃基分校:混凝土进步网络中心 (CAN),主要站点
  • 批准号:
    2310861
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Continuing Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
ART: Translational Research Ambassadors Network for Strengthening Institutional Capacity and Fostering a Responsive and Open Mindset (TRANSFORM)
ART:加强机构能力和培养积极响应和开放心态的转化研究大使网络(TRANSFORM)
  • 批准号:
    2331208
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Cooperative Agreement
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
  • 批准号:
    2346707
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 14.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了