Groebner Basis Techniques for Constraint Satisfaction Problems
约束满足问题的 Groebner 基础技术
基本信息
- 批准号:EP/D032636/1
- 负责人:
- 金额:$ 21.33万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2006
- 资助国家:英国
- 起止时间:2006 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many of the problems we use computers to solve have the same general form: we want the computer to find values for a collection of variables which satisfy various constraints. The constraints restrict the combinations of values allowed for some subsets of the variables. Many difficult computational problems fit this general framework. For example, the problem of scheduling a collection of building tasks in a sensible order, or putting together a timetable for a school or university. The same kinds of problems arise in choosing the frequencies for mobile phone transmitters, choosing the best routes for a fleet of delivery vehicles, or trying to match a newly-discovered protein structure against a database.It has turned out to be very useful for some purposes to view all these different problems as basically the same kind of problem: they can all be seen as constraint satisfaction problems. Doing this has led to the development of special programming languages for this kind of problem, and some very general techniques which allow us to analyse such problems and solve them as efficiently as possible.Some of the most interesting ideas have come from linking problems of this kind to mathematical ideas, such as graph theory, or the idea of an algebra. In this proposal we are seeking to build a new link between constraint satisfaction problems and the area of mathematics that deals with polynomial equations. The combinations allowed by a constraint can be represented as the roots of a polynomial equation, and then the solutions that satisfy a whole set of constraints correspond to the roots of a whole collection of polynomial equations. Mathematicians have developed tools for solving polynomial equations, and manipulating them into simpler forms. We want to see how these ideas can be used to manipulate constraint satisfaction problems. Also, we want to see whether the techniques developed by computer scientists for tackling constraint satisfaction problems and analysing their structure can be used in some new ways to analyse problems involving polynomials. We think that bringing the mathematical ideas together with the computational techniques will give us some new insights into the mathematical ideas, and will help to develop better ways to tackle constraint satisfaction problems.
我们用计算机解决的许多问题都具有相同的一般形式:我们希望计算机为满足各种约束的变量集合找到值。约束限制了某些变量子集允许的值的组合。许多困难的计算问题符合这个一般框架。例如,以合理的顺序安排一系列建筑任务的问题,或者为学校或大学制定时间表的问题。在为移动的电话发射机选择频率、为运输车队选择最佳路线或试图将新发现的蛋白质结构与数据库进行匹配时,也会出现同样的问题,在某些情况下,将所有这些不同的问题视为基本上相同的问题是非常有用的:它们都可以被视为约束满足问题。这样做导致了针对这类问题的特殊编程语言的发展,以及一些非常通用的技术,这些技术使我们能够分析这类问题并尽可能有效地解决它们。一些最有趣的想法来自于将这类问题与数学思想联系起来,如图论或代数的思想。在这个建议中,我们正在寻求建立一个新的约束满足问题之间的联系和处理多项式方程的数学领域。约束所允许的组合可以表示为多项式方程的根,然后满足整个约束集的解对应于整个多项式方程集合的根。数学家们已经开发出了求解多项式方程的工具,并将它们转化为更简单的形式。我们想看看这些想法如何被用来操纵约束满足问题。此外,我们想看看计算机科学家开发的解决约束满足问题和分析其结构的技术是否可以以一些新的方式用于分析涉及多项式的问题。我们认为,将数学思想与计算技术结合起来,将给我们带来一些新的见解的数学思想,并将有助于开发更好的方法来解决约束满足问题。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient methods for conversion and solution of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-solvers
通过 SAT 求解器在 GF(2) 上转换和求解低次多元多项式稀疏系统的有效方法
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:G Bard
- 通讯作者:G Bard
Automated Reasoning with Analytic Tableaux and Related Methods
使用分析表和相关方法进行自动推理
- DOI:10.1007/978-3-642-40537-2_17
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Khodadadi M
- 通讯作者:Khodadadi M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Jeavons其他文献
A Polynomial-Time Solution to Constraint Satisfaction Problems by Neural-like P Systems
类神经 P 系统约束满足问题的多项式时间解
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.7
- 作者:
Lei Xu;Xiangxiang Zeng;Peter Jeavons - 通讯作者:
Peter Jeavons
New Tractable Classes From Old
- DOI:
10.1023/a:1025623111033 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:1.300
- 作者:
David Cohen;Peter Jeavons;Richard Gault - 通讯作者:
Richard Gault
How to Determine the Expressive Power of Constraints
- DOI:
10.1023/a:1009890709297 - 发表时间:
1999-05-01 - 期刊:
- 影响因子:1.300
- 作者:
Peter Jeavons;David Cohen;Marc Gyssens - 通讯作者:
Marc Gyssens
Peter Jeavons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Jeavons', 18)}}的其他基金
Constraint Network Tractability: Beyond Structure and Language
约束网络的可处理性:超越结构和语言
- 批准号:
EP/L021226/1 - 财政年份:2014
- 资助金额:
$ 21.33万 - 项目类别:
Research Grant
The complexity of valued constraints
有价值约束的复杂性
- 批准号:
EP/F01161X/1 - 财政年份:2007
- 资助金额:
$ 21.33万 - 项目类别:
Research Grant
相似国自然基金
基于Volatility Basis-set方法对上海大气二次有机气溶胶生成的模拟
- 批准号:41105102
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
求解Basis Pursuit问题的数值优化方法
- 批准号:11001128
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Parallel techniques in the context of change of monomial ordering for Grobner basis
格罗布纳基单项式排序变化背景下的并行技术
- 批准号:
542270-2019 - 财政年份:2019
- 资助金额:
$ 21.33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
SHF: Small: New Directions in Groebner Basis based Verification using Logic Synthesis Techniques
SHF:小:使用逻辑综合技术进行基于 Groebner 基础的验证的新方向
- 批准号:
1619370 - 财政年份:2016
- 资助金额:
$ 21.33万 - 项目类别:
Standard Grant
Study on genomic basis of morphogenesis in hemimetabolous insects using novel genetic modification techniques
利用新型遗传修饰技术研究半变态昆虫形态发生的基因组基础
- 批准号:
26292176 - 财政年份:2014
- 资助金额:
$ 21.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The proposal focuses on the investigation of the molecular basis of Myxococcus xanthus A-motility, using genetic and fluorescence microscopy techniques
该提案的重点是利用遗传和荧光显微镜技术研究黄色粘球菌 A 运动性的分子基础
- 批准号:
193253204 - 财政年份:2011
- 资助金额:
$ 21.33万 - 项目类别:
Research Fellowships
Individual Net Length Estimation Techniques for VLSI Circuits Using Radial Basis Function
使用径向基函数的 VLSI 电路单独网络长度估计技术
- 批准号:
410281-2011 - 财政年份:2011
- 资助金额:
$ 21.33万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of spoken language processing techniques for real-time captioning on the basis of readability
基于可读性的实时字幕口语处理技术开发
- 批准号:
21700157 - 财政年份:2009
- 资助金额:
$ 21.33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Elucidation of the molecular basis on mammalian gametogenesis by genetic engineering and cell biological techniques
通过基因工程和细胞生物学技术阐明哺乳动物配子发生的分子基础
- 批准号:
21592111 - 财政年份:2009
- 资助金额:
$ 21.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CT-T: Proactive Techniques for Preserving System Integrity: A Basis for Robust Defense Against Malware
CT-T:保护系统完整性的主动技术:强大防御恶意软件的基础
- 批准号:
0831298 - 财政年份:2008
- 资助金额:
$ 21.33万 - 项目类别:
Continuing Grant
SGER: Static Voltage Stability Analysis using Grobner Basis Techniques
SGER:使用 Grobner 基础技术的静态电压稳定性分析
- 批准号:
0839176 - 财政年份:2008
- 资助金额:
$ 21.33万 - 项目类别:
Standard Grant
Elucidating the neurobiological basis for developmental stuttering using modern brain imaging techniques
利用现代脑成像技术阐明发育性口吃的神经生物学基础
- 批准号:
LP0562199 - 财政年份:2006
- 资助金额:
$ 21.33万 - 项目类别:
Linkage Projects