The complexity of valued constraints
有价值约束的复杂性
基本信息
- 批准号:EP/F01161X/1
- 负责人:
- 金额:$ 15.99万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2007
- 资助国家:英国
- 起止时间:2007 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is a collaborative application involving Professor Peter Jeavons at the University of Oxford, Professor David Cohen at Royal Holloway, University of London, and Dr Martin Cooper at the University of Toulouse III, France.We are seeking funding to extend and develop a novel algebraic theory of complexity for valued constraint satisfaction problems.Constraint satisfaction problems arise in many practical problems, such as scheduling and circuit layout, so this family of problems has been widely studied in computer science. All known algorithms for the most general form of the problem require exponential time, and are therefore impractical for large cases. However, several restrictions have been identified which are sufficient to make the restricted form of the problem efficiently solvable. In fact, a careful mathematical analysis of the problem has shown that the computational difficulty of any particular constraint satisfaction problem is closely related to certain algebraic properties of the constraints. In this research project we are seeking to develop a new algebraic approach to an even wider class of problems which involve both constraint satisfaction and optimisation. Such problems are called valued constraint problems. We hope to show that by using general algebraic methods we can identify all types of valued constraints which can be efficiently optimised. We also plan to implement the techniques we develop in new software tools which can be use to analyse any given example of a valued constraint problem, and solve it using special-purpose efficient methods when these are applicable.
这个提议是一个合作申请,涉及到牛津大学的Peter Jeavons教授,伦敦大学皇家霍洛威的大卫科恩教授和法国图卢兹三大学的马丁库珀博士。我们正在寻求资金来扩展和发展一个新的代数复杂性理论。约束满足问题出现在许多实际问题中,例如调度和电路布局,因此这类问题在计算机科学中得到了广泛的研究。所有已知的算法的最一般形式的问题需要指数时间,因此是不切实际的大型案件。然而,已经确定了几个限制,这是足以使限制形式的问题有效地解决。事实上,对问题的仔细数学分析表明,任何特定约束满足问题的计算难度与约束的某些代数性质密切相关。在这个研究项目中,我们正在寻求开发一种新的代数方法,甚至更广泛的一类问题,涉及约束满意度和优化。这样的问题被称为值约束问题。我们希望表明,通过使用一般的代数方法,我们可以识别所有类型的值的约束,可以有效地优化。我们还计划实施的技术,我们开发的新的软件工具,可用于分析任何给定的例子的一个值的约束问题,并解决它使用特殊目的的有效方法时,这些是适用的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Principles and Practice of Constraint Programming - CP 2010
约束规划原理与实践 - CP 2010
- DOI:10.1007/978-3-642-15396-9_15
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Cooper M
- 通讯作者:Cooper M
Mathematical Foundations of Computer Science 2011
计算机科学数学基础 2011
- DOI:10.1007/978-3-642-22993-0_23
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Cohen D
- 通讯作者:Cohen D
Hybrid tractability of valued constraint problems
- DOI:10.1016/j.artint.2011.02.003
- 发表时间:2010-08
- 期刊:
- 影响因子:0
- 作者:Martin C. Cooper;Stanislav Živný
- 通讯作者:Martin C. Cooper;Stanislav Živný
An Algebraic Theory of Complexity for Discrete Optimization
离散优化的复杂性代数理论
- DOI:10.1137/130906398
- 发表时间:2013
- 期刊:
- 影响因子:1.6
- 作者:Cohen D
- 通讯作者:Cohen D
A note on some collapse results of valued constraints
关于有价值约束的一些崩溃结果的说明
- DOI:10.1016/j.ipl.2009.01.018
- 发表时间:2009
- 期刊:
- 影响因子:0.5
- 作者:Zanuttini B
- 通讯作者:Zanuttini B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Jeavons其他文献
A Polynomial-Time Solution to Constraint Satisfaction Problems by Neural-like P Systems
类神经 P 系统约束满足问题的多项式时间解
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.7
- 作者:
Lei Xu;Xiangxiang Zeng;Peter Jeavons - 通讯作者:
Peter Jeavons
New Tractable Classes From Old
- DOI:
10.1023/a:1025623111033 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:1.300
- 作者:
David Cohen;Peter Jeavons;Richard Gault - 通讯作者:
Richard Gault
How to Determine the Expressive Power of Constraints
- DOI:
10.1023/a:1009890709297 - 发表时间:
1999-05-01 - 期刊:
- 影响因子:1.300
- 作者:
Peter Jeavons;David Cohen;Marc Gyssens - 通讯作者:
Marc Gyssens
Peter Jeavons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Jeavons', 18)}}的其他基金
Constraint Network Tractability: Beyond Structure and Language
约束网络的可处理性:超越结构和语言
- 批准号:
EP/L021226/1 - 财政年份:2014
- 资助金额:
$ 15.99万 - 项目类别:
Research Grant
Groebner Basis Techniques for Constraint Satisfaction Problems
约束满足问题的 Groebner 基础技术
- 批准号:
EP/D032636/1 - 财政年份:2006
- 资助金额:
$ 15.99万 - 项目类别:
Research Grant
相似海外基金
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Standard Grant
Locally Driven Approaches to Valued Pedagogies: A Comparative Study between Eastern and Western Africa and Latin America
本地驱动的有价值的教学法:东西非和拉丁美洲之间的比较研究
- 批准号:
22KK0207 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
A numerical method to solve matrix-valued differential inequalities with applications in dynamical systems
求解矩阵值微分不等式的数值方法及其在动力系统中的应用
- 批准号:
2889464 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Studentship
Bio-derived and Bio-inspired Advanced Materials for Sustainable Industries (VALUED)
用于可持续工业的生物衍生和仿生先进材料(VALUED)
- 批准号:
EP/W031019/1 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Research Grant
Memory Impedance for Efficient Complex-valued Neural Networks
高效复值神经网络的内存阻抗
- 批准号:
EP/X018431/1 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Research Grant
Travel: Model Theory of Valued Fields at CIRM
旅行:CIRM 有价值领域的模型理论
- 批准号:
2322918 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Standard Grant
Sustainable low carbon cell-based platform for scale-up production of high-valued materials for personal care and biopharmaceuticals
基于可持续低碳细胞的平台,用于扩大个人护理和生物制药高价值材料的生产
- 批准号:
10059364 - 财政年份:2023
- 资助金额:
$ 15.99万 - 项目类别:
Launchpad
Studies of those scholar-monks who valued the Mulasarvastivada-vinaya according to the wishes of Kukai
依空海遗愿重视根本说一切有部戒律的儒生研究
- 批准号:
22K00065 - 财政年份:2022
- 资助金额:
$ 15.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SOVA (Supporting Our Valued Adolescents) Peer Ambassador Program Pilot Study, Enhancing Resiliency in Low-Resource Youth
SOVA(支持我们有价值的青少年)同伴大使计划试点研究,增强资源匮乏青少年的复原力
- 批准号:
10552601 - 财政年份:2022
- 资助金额:
$ 15.99万 - 项目类别:
Model Theory of Valued Differential Fields
值微分场模型论
- 批准号:
2154086 - 财政年份:2022
- 资助金额:
$ 15.99万 - 项目类别:
Continuing Grant