Hybrid quantum and classical computation: exploiting the best of both paradigms
混合量子和经典计算:利用两种范式的优点
基本信息
- 批准号:EP/L022303/1
- 负责人:
- 金额:$ 133.5万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Digital electronic computation has become ubiquitous on a very rapid timescale: more and faster computation is in greater demand than ever. Quantum computing promises more raw computing power than we can achieve classically: turning this promise into reality is the overarching goal of my research. I will address the key theoretical issue that will enable us to fully exploit quantum computation: how to combine quantum and classical computation to gain maximum computational power and efficiency.It is a crucial time to step up the development of quantum computing: Google recently bought their first "quantum computer". This device, from D-Wave (Burnaby, Canada), is solving real problems for commercial applications, even though we don't yet know whether it is actually exploiting quantum mechanics to achieve efficient computation beyond the reach of classical machines. Quantum computing is clearly coming of age: to ensure the UK has a place in the forefront of these developments we need our theorists and experimentalists to play their part in leading this computing revolution.My research is central to the key questions the D-Wave quantum computer challenges us with.How, exactly, do we persuade quantum systems to solve hard classical problems efficiently for us? We are part of the way there, we already know how to solve quantum problems: Feynman in 1982 first described how a quantum computer could efficiently simulate quantum systems, and experiments that can do this are well under way in labs around the world. Classical problems are tougher, there are relatively few algorithms promising a speed up. To use a quantum computer to solve a classical problem, such as factoring large numbers, or searching a random data set, or finding the best solution under a complex set of constraints, or modelling a large system (climate or proteins for example), we need a hybrid classical-quantum device that can start with the classical problem, convert it into a quantum representation, solve it, and then return the solution as classical data. Existing theoretical models of computation are simple, elegant, single paradigm models that perform well for analysis of complexity and computability - how hard it is to solve, and what are the minimum resources required - but methods of combining different models into hybrid composites that more closely match real computational devices are missing. Even the simplest experimental quantum processor is a hybrid device, typically combining classical controling hardware with two or more different quantum systems interacting through precisely specified sequences of operations. Hybrid quantum systems enable more practical experiments and more efficient quantum computer programs, both of which are essential to reduce the noise that would otherwise render quantum devices useless. But we don't yet know what is the best model of computation we should use to physically build useful computers. Silicon-based digital technology is serving us well, but the bienniel doubling of classical computing power is reaching quantum limitations in how small the elemental components can be made, and a diversity of less conventional devices are invading the marketplace for our daily productivity and entertainment. Niches are opening up for many special purpose types of computer, of which quantum is one important example. I will address these key gaps in our knowledge by developing a theoretical understanding of composite quantum-classical computational devices with real-world constraints applied, and by detailed theoretical and computational modelling of hybrid quantum-classical systems to characterise their properties, computational power and the conditions required for their efficient operation. This will enable me to provide the science and leadership that will place the UK in a prime position to produce and exploit the technology in the new era of quantum computation.
数字电子计算在非常快的时间尺度上变得无处不在:对更多更快的计算的需求比以往任何时候都大。量子计算承诺比我们传统方法所能实现的更强大的原始计算能力:将这一承诺变为现实是我研究的首要目标。我将解决关键的理论问题,使我们能够充分利用量子计算:如何结合量子和经典计算,以获得最大的计算能力和效率。这是加快量子计算发展的关键时刻:谷歌最近购买了他们的第一台“量子计算机”。这个来自D-Wave公司(加拿大本拿比)的设备正在解决商业应用中的实际问题,尽管我们还不知道它是否真的利用量子力学来实现超越经典机器的高效计算。量子计算显然正在成熟:为了确保英国在这些发展的前沿占有一席之地,我们需要我们的理论家和实验家在领导这场计算革命中发挥自己的作用。我的研究是D-Wave量子计算机挑战我们的关键问题的核心。确切地说,我们如何说服量子系统有效地为我们解决困难的经典问题?我们已经走了一部分路,我们已经知道如何解决量子问题:1982年,费曼首次描述了量子计算机如何有效地模拟量子系统,世界各地的实验室都在进行这样的实验。经典问题更难,有相对较少的算法承诺加速。要使用量子计算机来解决经典问题,例如分解大数,或搜索随机数据集,或在一组复杂约束下找到最佳解决方案,或对大型系统(例如气候或蛋白质)建模,我们需要一个混合经典-量子设备,它可以从经典问题开始,将其转换为量子表示,解决它,然后将解决方案作为经典数据返回。现有的计算理论模型是简单、优雅的单一范式模型,它们在分析复杂性和可计算性方面表现良好——求解的难易程度,以及所需的最小资源是什么——但是将不同模型组合成更接近真实计算设备的混合复合材料的方法却缺失了。即使是最简单的实验量子处理器也是一种混合设备,通常将经典的控制硬件与两个或多个不同的量子系统结合起来,通过精确指定的操作序列相互作用。混合量子系统可以实现更实际的实验和更高效的量子计算机程序,这两者对于减少噪音至关重要,否则量子设备将无法使用。但我们还不知道什么是最好的计算模型,我们应该使用物理构建有用的计算机。基于硅的数字技术为我们提供了很好的服务,但传统计算能力每两年翻一番的速度,在基本组件的制造上已经达到了量子极限,各种不太传统的设备正在侵入我们的日常生产和娱乐市场。许多特殊用途类型的计算机正在涌现,量子计算机就是其中一个重要的例子。我将通过发展对具有现实世界约束的复合量子-经典计算设备的理论理解,以及通过对混合量子-经典系统的详细理论和计算建模来描述其特性、计算能力和有效运行所需的条件,来解决我们知识中的这些关键空白。这将使我能够提供科学和领导力,使英国在量子计算的新时代生产和利用技术方面处于领先地位。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Finding spin glass ground states using quantum walks
- DOI:10.1088/1367-2630/ab5ca2
- 发表时间:2019-12-01
- 期刊:
- 影响因子:3.3
- 作者:Callison, Adam;Chancellor, Nicholas;Kendon, Viv
- 通讯作者:Kendon, Viv
Quantum walk transport properties on graphene structures
石墨烯结构上的量子行走传输特性
- DOI:10.48550/arxiv.1611.02991
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Bougroura H
- 通讯作者:Bougroura H
Energetic Perspective on Rapid Quenches in Quantum Annealing
- DOI:10.1103/prxquantum.2.010338
- 发表时间:2020-07
- 期刊:
- 影响因子:9.7
- 作者:A. Callison;Max Z. Festenstein;Jie Chen;Laurentiu Nita;V. Kendon;N. Chancellor
- 通讯作者:A. Callison;Max Z. Festenstein;Jie Chen;Laurentiu Nita;V. Kendon;N. Chancellor
Finding spin-glass ground states using quantum walks
使用量子行走寻找自旋玻璃基态
- DOI:10.48550/arxiv.1903.05003
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Callison A
- 通讯作者:Callison A
Quantum-walk transport properties on graphene structures
- DOI:10.1103/physreva.94.062331
- 发表时间:2016-12-23
- 期刊:
- 影响因子:2.9
- 作者:Bougroura, Hamza;Aissaoui, Habib;Kendon, Viv
- 通讯作者:Kendon, Viv
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vivien Kendon其他文献
Vivien Kendon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vivien Kendon', 18)}}的其他基金
CCP-QC: Collaborative Computational Project - Quantum Computinge-
CCP-QC:协作计算项目 - 量子计算-
- 批准号:
EP/T026715/2 - 财政年份:2021
- 资助金额:
$ 133.5万 - 项目类别:
Research Grant
Quantum Enhanced and Verified Exascale Computing - QEVEC
量子增强和验证百亿亿次计算 - QEVEC
- 批准号:
EP/W00772X/1 - 财政年份:2021
- 资助金额:
$ 133.5万 - 项目类别:
Research Grant
Quantum Enhanced and Verified Exascale Computing - QEVEC
量子增强和验证百亿亿次计算 - QEVEC
- 批准号:
EP/W00772X/2 - 财政年份:2021
- 资助金额:
$ 133.5万 - 项目类别:
Research Grant
CCP-QC: Collaborative Computational Project - Quantum Computinge-
CCP-QC:协作计算项目 - 量子计算-
- 批准号:
EP/T026715/1 - 财政年份:2020
- 资助金额:
$ 133.5万 - 项目类别:
Research Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
高温气化过程中煤灰矿物质演变规律的量子化学计算与实验研究
- 批准号:50906055
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
广义Besov函数类上的几个逼近特征
- 批准号:10926056
- 批准年份:2009
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于量子点多色荧光细胞标志谱型的CTC鉴别与肿瘤个体化诊治的研究
- 批准号:30772507
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
驻波场驱动的量子相干效应的研究
- 批准号:10774058
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
量子计算电路的设计和综合
- 批准号:60676020
- 批准年份:2006
- 资助金额:31.0 万元
- 项目类别:面上项目
半导体物理中的非线性偏微分方程组
- 批准号:10541001
- 批准年份:2005
- 资助金额:4.0 万元
- 项目类别:专项基金项目
量子点技术对细胞表面蛋白和受体在体内分布的研究
- 批准号:30570686
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
- 批准号:
2330974 - 财政年份:2024
- 资助金额:
$ 133.5万 - 项目类别:
Standard Grant
Quantum-classical hybrid algorithms for quantum impurity models
量子杂质模型的量子经典混合算法
- 批准号:
23KJ0295 - 财政年份:2023
- 资助金额:
$ 133.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hybrid quantum-classical neural networks
混合量子经典神经网络
- 批准号:
574286-2022 - 财政年份:2022
- 资助金额:
$ 133.5万 - 项目类别:
University Undergraduate Student Research Awards
Applications of Grover's search: hybrid quantum classical algorithms
Grover 搜索的应用:混合量子经典算法
- 批准号:
575054-2022 - 财政年份:2022
- 资助金额:
$ 133.5万 - 项目类别:
University Undergraduate Student Research Awards
Development of a hybrid quantum-classical reservoir simulator and evaluation of quantum computing hardware
混合量子经典储层模拟器的开发和量子计算硬件的评估
- 批准号:
561106-2020 - 财政年份:2021
- 资助金额:
$ 133.5万 - 项目类别:
Alliance Grants
Quantum/Classical hybrid simulations of multielectron dynamics in intense laser fields
强激光场中多电子动力学的量子/经典混合模拟
- 批准号:
21K18903 - 财政年份:2021
- 资助金额:
$ 133.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Quantum-classical hybrid quantum computing for quantum many-body systems
量子多体系统的量子经典混合量子计算
- 批准号:
21H04446 - 财政年份:2021
- 资助金额:
$ 133.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Machine Learning using Quantum-Classical Hybrid Algorithms
使用量子经典混合算法的机器学习
- 批准号:
21K11764 - 财政年份:2021
- 资助金额:
$ 133.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High Performance Computing for Materials Simulation by Quantum-Classical Hybrid Algorithms
通过量子经典混合算法进行材料模拟的高性能计算
- 批准号:
21K03391 - 财政年份:2021
- 资助金额:
$ 133.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a hybrid quantum-classical reservoir simulator and evaluation of quantum computing hardware
混合量子经典储层模拟器的开发和量子计算硬件的评估
- 批准号:
561106-2020 - 财政年份:2020
- 资助金额:
$ 133.5万 - 项目类别:
Alliance Grants