100 kHz magic angle spinning for development of solid-state NMR methodology for probing protein dynamics

100 kHz 魔角旋转用于开发探测蛋白质动力学的固态 NMR 方法

基本信息

  • 批准号:
    EP/L025906/1
  • 负责人:
  • 金额:
    $ 14.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Motion and change are essential features of living organisms and fundamentally important for many vital processes from protein folding and unfolding, ligand binding, signalling, allosteric regulation to enzymatic catalysis. Consequently, understanding motions at molecular level provides valuable insights into the phenomena involving change of structure both when they function as intended or when they malfunction. For example understanding how proteins misfold may help to fight debilitating diseases called amyloidoses that include Alzheimer's disease, type II diabetes or bovine spongiform encephalopathy more widely known as "mad cow" disease. Moreover, understanding motions that are intrinsically associated with signalling pathways may result in development of better drugs that target such pathways (most medicines work this way). Even development of practical environmentally friendly biobatteries and biofuel cells may be aided by knowledge of molecular motions as they make use of enzymes. Thus it is really important to devise ways to measure protein motions at atomic resolution.To do that, in this project, we will develop a technique called nuclear magnetic resonance (NMR), which relies on the inherent magnetism of atomic nuclei. When placed in a strong magnetic field magnetic moments of nuclei align with the external field but this alignment may be changed by application of radio waves at specific frequencies. By measuring the associated frequencies one can learn about the relative position of atoms with respect to each other and how this position changes with time i.e. molecular motions. A very powerful aspect of this technique is that one can learn such information not only for a molecule overall but for specific atoms in it. In solid-state NMR, which is the primary method used in this project, the high resolution necessary to distinguish individual sites is enabled by a technique called magic angle spinning (MAS), which involves fast rotation of the sample around an axis inclined at an angle of 54.7 degrees to the external magnetic field. Recently introduced cutting edge instrumentation allows achieving spinning frequencies up to 100 000 revolutions per second. The centre of this project is the purchase of the first in the UK probe capable of 100 kHz MAS. The improved efficiency of MAS at such astounding frequencies makes possible designing new experiments that provide new analytical tools to access motions, e.g. site-specific 1H relaxation or highly sensitive 1H-detected relaxation measurements in fully protonated samples. The 100 kHz spinning removes a number of undesired effects obscuring the measurements of parameters reporting on molecular motions and thus allows a detailed view of protein motions to be obtained.In this project we propose to develop a series of robust solid-state NMR spectroscopic methods that take advantage of the new 100 kHz spinning regime and will provide improved access to measuring of dynamic processes in proteins at atomic resolution and in a site-specific manner. In particular, we will focus on techniques that provide access to slow motions in the regime that is difficult to access by the solid-state NMR sister method - solution NMR. In addition, in order to improve practicality of the developed techniques we will optimise them for speed and sensitivity.
运动和变化是生物体的重要特征,对于从蛋白质折叠和展开,配体结合,信号传导,变构调节到酶促催化的许多重要过程至关重要。因此,理解分子水平的运动为涉及结构变化的现象提供了有价值的见解,既可以按预期或故障发电。例如,了解蛋白质的错误折叠可能有助于与包括阿尔茨海默氏病,II型糖尿病或牛海绵状脑病在内的称为淀粉样蛋白的衰弱性疾病作斗争。此外,了解与信号通路本质上相关的运动可能会导致靶向这种途径的更好的药物(大多数药物以这种方式工作)。即使开发实用环保的生物库和生物燃料细胞,也可以通过使用酶的分子运动来帮助。因此,设计方法在原子分辨率下测量蛋白质运动的方法确实很重要。在此项目中,我们将开发一种称为核磁共振(NMR)的技术,该技术依赖于原子核的固有磁性。当将核的磁场磁矩与外场保持一致时,但是可以通过在特定频率下应用无线电波来改变这种比对。通过测量相关的频率,人们可以了解原子相对于彼此的相对位置以及该位置如何随时间而变化,即分子运动。该技术的一个非常有力的方面是,人们不仅可以为整个分子学习此类信息,而且可以针对其中的特定原子学习。在该项目中使用的主要方法的固态NMR中,区分单个位点所需的高分辨率是通过一种称为魔术角旋转(MAS)的技术来启用的,该技术涉及样品围绕轴的快速旋转,该轴以54.7度的角度与外部磁场的角度为54.7度。最近引入的尖端仪表允许每秒达到高达100 000转的旋转频率。该项目的中心是在英国购买了100 kHz MAS的探针中的第一个。 MAS在这种惊人的频率上的提高效率使设计新的实验可以提供新的分析工具,例如完全质子化的样品中特定于位点特异性的1H弛豫或高度敏感的1H检测弛豫测量。 100 kHz旋转消除了许多不希望的效果,这些效果掩盖了报道分子运动的参数的测量,因此可以详细地获得蛋白质运动的详细观点。在本项目中,我们建议我们提出一系列强大的固态NMR光谱方法,以利用新的100 kHz镜头访问,并利用了将量化的速度访问的方法,并利用了量子的速度访问量,并将特定地点的方式。特别是,我们将重点关注的技术可提供对稳定动作的访问权限,而固态NMR姐妹方法很难访问的速度运动 - 解决方案NMR。此外,为了提高开发技术的实用性,我们将以速度和灵敏度优化它们。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unraveling the complexity of protein backbone dynamics with combined (13)C and (15)N solid-state NMR relaxation measurements
通过组合 (13)C 和 (15)N 固态 NMR 弛豫测量揭示蛋白质主链动力学的复杂性
  • DOI:
    10.5451/unibas-ep39973
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lamley, Jonathan M.
  • 通讯作者:
    Lamley, Jonathan M.
1H line width dependence on MAS speed in solid state NMR - Comparison of experiment and simulation.
  • DOI:
    10.1016/j.jmr.2018.04.003
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    U. Sternberg;R. Witter;I. Kuprov;Jonathan M. Lamley;Andres Oss;Józef R. Lewandowski;A. Samoson
  • 通讯作者:
    U. Sternberg;R. Witter;I. Kuprov;Jonathan M. Lamley;Andres Oss;Józef R. Lewandowski;A. Samoson
Dipolar Order Parameters in Large Systems With Fast Spinning.
  • DOI:
    10.3389/fmolb.2021.791026
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Franks WT;Tatman BP;Trenouth J;Lewandowski JR
  • 通讯作者:
    Lewandowski JR
Intermolecular Interactions and Protein Dynamics by Solid-State NMR Spectroscopy.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Józef Lewandowski其他文献

Józef Lewandowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Józef Lewandowski', 18)}}的其他基金

Enabling new characterisation methods for dynamic systems through the upgrade of 700 MHz solution NMR spectrometer
通过升级 700 MHz 溶液核磁共振波谱仪,为动态系统提供新的表征方法
  • 批准号:
    BB/W020297/1
  • 财政年份:
    2022
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Research Grant
Illuminating and exploiting programmed O-methylation in trans-AT polyketide synthases
阐明和利用反式 AT 聚酮合酶中的程序化 O-甲基化
  • 批准号:
    BB/W003171/1
  • 财政年份:
    2021
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Research Grant
Renewal of the 600 MHz solid-state NMR console for biological applications
更新用于生物应用的 600 MHz 固态 NMR 控制台
  • 批准号:
    BB/T018119/1
  • 财政年份:
    2020
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Research Grant
Elucidating and exploiting docking domain-mediated carrier protein recognition in natural product megasynthetases
阐明和利用天然产物大合成酶中对接域介导的载体蛋白识别
  • 批准号:
    BB/R010218/1
  • 财政年份:
    2018
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Research Grant
Biophysical basis for the chain termination in the enacyloxin polyketide synthase
烯酰氧聚酮合酶链终止的生物物理学基础
  • 批准号:
    BB/L022761/1
  • 财政年份:
    2015
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Research Grant

相似国自然基金

kHz非定频超材料隔爆壳透窗的谐振特性及其对矿井无线电能传输系统耦合特性的影响研究
  • 批准号:
    52304275
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
超快魔角旋转下(≥100kHz)用于生物固体样品质子检测的核磁共振方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
基于光学微腔—微悬梁机械振子耦合光力系统的kHz频段高灵敏磁力仪
  • 批准号:
    12174438
  • 批准年份:
    2021
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
超快魔角旋转下(≥100kHz)用于生物固体样品质子检测的核磁共振方法
  • 批准号:
    22104091
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
海底沉积物的剪切波传播特性(500Hz-3kHz)及频散机制
  • 批准号:
    42176191
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

TAMA300によるkHz帯重力波検出に向けた新たな干渉計方式の設計と技術実証
使用 TAMA300 进行 kHz 波段引力波探测的新型干涉仪方法的设计和技术演示
  • 批准号:
    23KJ0787
  • 财政年份:
    2023
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
RAPID: OOI-Industry Partnership to Install a Cabled 45 kHz ADCP at Axial Seamount Caldera
RAPID:OOI 与行业合作在 Axial Seamount Caldera 安装有线 45 kHz ADCP
  • 批准号:
    2129943
  • 财政年份:
    2021
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Millimeter-wave Vector Network Analyzer and a Probe Station Capable of a Single Sweep from 70 kHz to 220 GHz
MRI:获取毫米波矢量网络分析仪和能够在 70 kHz 至 220 GHz 范围内进行单次扫描的探针台
  • 批准号:
    2117305
  • 财政年份:
    2021
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Femtosecond kHz laser/amplifier system with optical parametric amplifier (OPA), pumped through the main unit and usable only through this.
带有光学参量放大器 (OPA) 的飞秒 kHz 激光/放大器系统,通过主单元泵浦,并且只能通过主单元使用。
  • 批准号:
    437059640
  • 财政年份:
    2020
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Major Research Instrumentation
Femtosecond laser with frequency conversion, pulse shaping, and detection at 100 kHz repetition rate
具有频率转换、脉冲整形和 100 kHz 重复率检测功能的飞秒激光器
  • 批准号:
    447563061
  • 财政年份:
    2020
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了