kHz frequency Spinal Cord Stimulation: Novel Temperature-Based Mechanisms of Action
kHz 频率脊髓刺激:基于温度的新型作用机制
基本信息
- 批准号:10709773
- 负责人:
- 金额:$ 35.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project(Summary(/(Abstract!
There is a need to understand the mechanisms of neural stimulation technologies (RFA-NS-18-018). The impact
of such research increases with both the clinical relevance of a neuromodulation technology and the extent
mechanisms are unknown. Spinal Cord Stimulation at kHz frequencies (kHz SCS) has undergone a meteoric
clinical and market rise, in the absence of an accepted mechanistic hypothesis. The most peculiar feature of kHz
SCS mechanistically is that rapid biphasic stimulation undermines traditional mechanisms of electrical
stimulation. But, we note this same feature of rapid pulsing results in high stimulation power leading to our
hypothesis that kHz SCS increases tissue temperature. Our proposal that a clinically-established implanted
electrical stimulation device would unexpectantly function by joule heating is disruptive and innovative and so
requires, as the first step, to establish the degree of temperature increase during kHz SCS. To this end, our
research plan develops state-of-the-art tools for multi-physics bioheat modeling (Aim 1), multi-compartment 3D-
lattice phantom verification (Aim 2), and validation in a swine model (Aim 3) to methodically test the hypothesis
that kHz SCS produces a 0.5-2 oC temperature rise. The multi-physics model (Aim 1) will be state-of-the-at in
anatomical resolution, internal lead architecture, and the first to couple joule heat, heat conduction and
convection (CSF flow), metabolism, and blood flow perfusion. The heat phantom (Aim 2) will be the first for spinal
cord stimulation based on novel 3D-lattice printed compartments. The swine model (Aim 3) is selected for
anatomical similarities to the human spinal cord and vertebral canal, and will include a custom fabricated
combination lead/sensor array for in vivo temperature mapping. The most peculiar clinical feature of kHz SCS is
lack of paresthesia, associated with conventional SCS. We will develop a dorsal horn network model of heating-
based analgesia (Aim 4) by integrating experimentally validated temperature increases, pain processing network
dynamics, and membrane sensitivity to temperature (Q10). We hypothesize a 0.5-2 0C temperature rise
generates pain relief through the same final MoA as conventional SCS (gate-control) but without pacing
associated paresthesia. RFA responsive, this “computational model incorporates cellular heterogeneity”,
specifically electrophysiological data on of excitatory vs inhibitory superficial dorsal horn interneurons, including
differential responses to heating. While device design, disease models, and clinical trials are explicitly outside
RFA scope, establishing a novel MoA and state-of-the-art tools developed in each Aim implicitly drive and
underpin such developments. Directly RFA responsive, we “improve understanding of the neurobiological
underpinnings of existing methods and lay the foundation for the next generation technologies by developing
models (Aim 1, 4), systems (Aim 2), and procedures (Aim 3) to guide the design of better neuromodulation tools”.
Indeed, because the heating MoA is fundamentally innovative, new tools are needed.
项目(摘要(/摘要!
需要了解神经刺激技术的机制(RFA-NS-18-018)。影响
这种研究的增加随着神经调节技术的临床相关性和程度而增加
机制是未知的。 KHz频率(KHz SCS)的脊髓刺激发生了气象
在没有公认的机械假设的情况下,临床和市场上升。 KHz最奇特的功能
SCS机械上是,快速双相刺激破坏了电气的传统机制
刺激。但是,我们注意到快速脉动的同样特征导致高刺激能力导致我们
假设KHz SC会增加组织温度。我们提出的临床建立的植入
电刺激装置将通过焦耳加热意外运行是破坏性和创新性的,因此
作为第一步,要求建立KHz SCS期间温度升高的程度。为此,我们的
研究计划开发多物理生物学建模的最新工具(AIM 1),多校区3D-
晶格幻影验证(AIM 2)和猪模型中的验证(AIM 3)有条不紊地检验假设
KHz SCS产生0.5-2的OC温度升高。多物理模型(AIM 1)将是最新的
解剖分辨率,内部铅架构以及第一个逐对焦热,热传导和
对流(CSF流),代谢和血流灌注。热幻影(AIM 2)将是脊柱的第一个
基于新颖的3D晶格印刷室的绳索刺激。选择猪模型(AIM 3)
与人脊髓和椎管的解剖相似性,并将包括定制的制造
用于体内温度映射的组合铅/传感器阵列。 KHz SCS最特殊的临床特征是
缺乏异常,与常规SC相关。我们将开发一个加热的背喇叭网络模型
通过整合实验验证的温度升高,疼痛处理网络,基于镇痛(AIM 4)
动力学和膜对温度的敏感性(Q10)。我们假设0.5-2 0c温度升高
通过与常规SCS(登机口)相同的最终MOA产生疼痛缓解,但没有起搏
相关的异常。 RFA响应迅速,这种“计算模型结合细胞异质性”,
特定于兴奋性与抑制性表面背角中间神经元的电生理数据,包括
对加热的差异反应。虽然设备设计,疾病模型和临床试验明确在外面
RFA范围,建立一个新颖的MOA和最先进的工具,在每个目标中都隐含地驱动和
基于此类发展。直接响应式RFA,我们“提高了对神经生物学的理解
现有方法的基础,并通过开发为下一代技术奠定了基础
模型(AIM 1,4),系统(AIM 2)和程序(AIM 3)指导设计更好的神经调节工具的设计。
确实,由于加热MOA从根本上是创新的,因此需要新的工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAROM BIKSON其他文献
MAROM BIKSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MAROM BIKSON', 18)}}的其他基金
Open-source computational modeling of Spinal Cord Stimulation (SCS) to enhance dissemination of 1R01NS112996
脊髓刺激 (SCS) 的开源计算模型可增强 1R01NS112996 的传播
- 批准号:
10413556 - 财政年份:2021
- 资助金额:
$ 35.07万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10462520 - 财政年份:2020
- 资助金额:
$ 35.07万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10689071 - 财政年份:2020
- 资助金额:
$ 35.07万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10024978 - 财政年份:2020
- 资助金额:
$ 35.07万 - 项目类别:
"Bridges to the Baccalaureate Research Training Program at LaGuardia Community College"
“通往拉瓜迪亚社区学院学士学位研究培训计划的桥梁”
- 批准号:
10220083 - 财政年份:2020
- 资助金额:
$ 35.07万 - 项目类别:
The coupled vascular hypothesis for transcranial direct current stimulation (tDCS)
经颅直流电刺激 (tDCS) 的耦合血管假说
- 批准号:
9891113 - 财政年份:2017
- 资助金额:
$ 35.07万 - 项目类别:
A tool-box to control and enhance tDCS spatial precision
控制和增强 tDCS 空间精度的工具箱
- 批准号:
9229408 - 财政年份:2016
- 资助金额:
$ 35.07万 - 项目类别:
A tool-box to control and enhance tDCS spatial precision
控制和增强 tDCS 空间精度的工具箱
- 批准号:
9357699 - 财政年份:2016
- 资助金额:
$ 35.07万 - 项目类别:
Modulation of blood-brain-barrier (BBB) permeability by tDCS relevant electric fi
通过 tDCS 相关电刺激调节血脑屏障 (BBB) 通透性
- 批准号:
8702690 - 财政年份:2014
- 资助金额:
$ 35.07万 - 项目类别:
Wireless Pulse Oximetry (WiPOX) for Diagnosing Intra-Operative Ischemia
用于诊断术中缺血的无线脉搏血氧仪 (WiPOX)
- 批准号:
8702683 - 财政年份:2014
- 资助金额:
$ 35.07万 - 项目类别:
相似国自然基金
基于频率选择表面的电磁波角度选择性研究
- 批准号:62361008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于指定时间包含控制的风-光-储系统频率、电压一体化控制方案研究
- 批准号:52377074
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
背根神经节特异性传导针刺频率信号的神经环路研究
- 批准号:82305050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非平稳条件下多变量洪水频率分析方法研究-以淮河流域为例
- 批准号:42301026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理引导的机器学习求解频率域声波正反问题研究
- 批准号:42374141
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Miniature and integrable balun for light-weight and flexible MRI RF coils
用于轻型、灵活 MRI 射频线圈的微型、可集成巴伦
- 批准号:
10640644 - 财政年份:2023
- 资助金额:
$ 35.07万 - 项目类别:
PACAP/PAC1 receptor signaling in micturition neurocircuits: effects of stress and injury/inflammation
排尿神经回路中的 PACAP/PAC1 受体信号传导:压力和损伤/炎症的影响
- 批准号:
10774523 - 财政年份:2023
- 资助金额:
$ 35.07万 - 项目类别:
Visualizing trigeminal neuralgia at 7 Tesla: Advancing etiological understanding and improving future clinical imaging protocols
7 特斯拉可视化三叉神经痛:促进病因学理解并改进未来的临床成像方案
- 批准号:
10667246 - 财政年份:2022
- 资助金额:
$ 35.07万 - 项目类别:
High frequency sacral root stimulation to improve bladder and bowel emptying following SCI
高频骶根刺激可改善 SCI 后膀胱和肠道排空
- 批准号:
10662457 - 财政年份:2022
- 资助金额:
$ 35.07万 - 项目类别:
Exploring the Parameter Space of High Frequency Magnetic Perturbation in Manipulating Neural Excitability and Plasticity.
探索高频磁扰动操纵神经兴奋性和可塑性的参数空间。
- 批准号:
10684222 - 财政年份:2022
- 资助金额:
$ 35.07万 - 项目类别: