Nonparametric Learning for Situated Data-to-Text Generation: Helping People to Understand Uncertain Data
用于情景数据到文本生成的非参数学习:帮助人们理解不确定数据
基本信息
- 批准号:EP/L026775/1
- 负责人:
- 金额:$ 12.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Information overload is a pervasive problem in many environments, particularly those in which human decision making is based on extensive data sets. Data-to-text systems have been shown to successfully address this problem by automatically generating textual descriptions of the underlying data. However, when translating (numerical) data into words, an appropriate level of precision needs to be chosen. The following example is from a system which summarises medical time series data for neonatal care: "At 17:24 T1 is 35.7 and T2 is 34.5C" (Gatt et al., 2009). This summary is clearly targeted to experts, such as doctors or nurses, which need precise information for decision making. However, other users, such as visiting parents might be more happy with a description such as "In the evening your baby had normal temperature." In this project, we will build a data-to-text system that automatically determines the appropriate level of precision for a given context by using statistical machine learning methods. These methods can learn an optimal generation policy from real data and promise to be more robust to new situations than hand-written rules by human experts. We will also investigate novel feedback-based non-parametric state estimation methods to reduce the data annotation cost for data-to-text systems. Typically, the first step in creating such systems is to manually interpret and align the raw data sources. However, this step is very costly as human experts need to trained for this task. Our new methods promise for data-to-text systems to be rapidly applied to new domains. The domain we will be targeting for this initial project is pedestrian navigation, where the task is to translate uncertain user positions into walking instructions. The underlying data uncertainty here arises from several sources, such as the user's speech signal, the GPS location, estimated viewshed, walking direction and speed. We will integrate and test our learnt data-to-text generation strategy by integrating it in an existing system and running an evaluation with real users. One of the outcomes of this project is a data-driven linguistic view on the question of "how to communicate uncertainty", which is an active interdisciplinary research area, including researchers from medicine, law, environmental modelling and climate change.In future work we will also investigate how the proposed framework transfers to new domains, such as natural language generation from medical data, weather forecasts, or output from complex environmental models.
信息过载是许多环境中普遍存在的问题,特别是那些人类决策是基于大量数据集的环境。数据到文本系统已经被证明可以通过自动生成底层数据的文本描述成功地解决这个问题。然而,在将(数字)数据转换为文字时,需要选择适当的精度级别。以下示例来自总结用于新生儿护理的医学时间序列数据的系统:“在17:24,T1是35.7并且T2是34.5C”(Gatt等人,2009年)。这份摘要显然是针对专家的,比如医生或护士,他们需要精确的信息来做出决策。然而,其他用户,如来访的父母可能更高兴的描述,如“在晚上,你的宝宝有正常的温度。“在这个项目中,我们将构建一个数据到文本的系统,通过使用统计机器学习方法自动确定给定上下文的适当精度水平。这些方法可以从真实的数据中学习最优的生成策略,并且比人类专家手写的规则对新情况更具鲁棒性。我们还将研究新的基于反馈的非参数状态估计方法,以减少数据到文本系统的数据注释成本。通常,创建此类系统的第一步是手动解释和对齐原始数据源。然而,这一步是非常昂贵的,因为人类专家需要为此任务进行培训。我们的新方法有望使数据到文本系统快速应用于新的领域。我们将针对这个初始项目的领域是行人导航,其中的任务是将不确定的用户位置转换为步行指令。这里潜在的数据不确定性来自几个来源,例如用户的语音信号、GPS位置、估计的视域、行走方向和速度。我们将通过将其集成到现有系统中并与真实的用户进行评估来集成和测试我们学习的数据到文本生成策略。该项目的成果之一是从数据驱动的语言学角度来研究“如何传达不确定性”的问题,这是一个活跃的跨学科研究领域,包括医学、法律、环境建模和气候变化等领域的研究人员。在未来的工作中,我们还将研究所提出的框架如何转移到新的领域,例如从医疗数据生成自然语言,天气预报,或复杂环境模型的输出。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generating and Evaluating Landmark-based Navigation Instructions in Virtual Environments
在虚拟环境中生成和评估基于地标的导航指令
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Cercas Curry A.
- 通讯作者:Cercas Curry A.
Information density and overlap in spoken dialogue
- DOI:10.1016/j.csl.2015.11.001
- 发表时间:2016-05
- 期刊:
- 影响因子:0
- 作者:Nina Dethlefs;H. Hastie;H. Cuayáhuitl;Yanchao Yu;Verena Rieser;Oliver Lemon
- 通讯作者:Nina Dethlefs;H. Hastie;H. Cuayáhuitl;Yanchao Yu;Verena Rieser;Oliver Lemon
How to talk to strangers: Generating medical reports for first-time users
- DOI:10.1109/fuzz-ieee.2016.7737739
- 发表时间:2016-07
- 期刊:
- 影响因子:0
- 作者:Dimitra Gkatzia;Verena Rieser;Oliver Lemon
- 通讯作者:Dimitra Gkatzia;Verena Rieser;Oliver Lemon
Generating Verbal Descriptions from Medical Sensor Data: A Corpus Study on User Preferences
从医疗传感器数据生成口头描述:用户偏好的语料库研究
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Gkatzia G
- 通讯作者:Gkatzia G
From the Virtual to the Real World: Referring to Objects in Spatial Real-World Images
从虚拟到现实世界:参考空间现实世界图像中的对象
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Gkatzia D.
- 通讯作者:Gkatzia D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Verena Rieser其他文献
An Arabic Twitter Corpus for Subjectivity and Sentiment Analysis
用于主观性和情感分析的阿拉伯语 Twitter 语料库
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Eshrag A. Refaee;Verena Rieser - 通讯作者:
Verena Rieser
A Game-Based Setup for Data Collection and Task-Based Evaluation of Uncertain Information Presentation
基于游戏的数据收集设置和基于任务的不确定信息呈现评估
- DOI:
10.18653/v1/w15-4720 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Dimitra Gkatzia;A. C. Curry;Verena Rieser;Oliver Lemon - 通讯作者:
Oliver Lemon
”I Like You, as a Friend”: Voice Assistants’ Response Strategies to Sexual Harassment and Their Relation to Gender
“我喜欢你,作为朋友”:语音助手对性骚扰的应对策略及其与性别的关系
- DOI:
10.31234/osf.io/wys34 - 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
L. M. Leisten;Verena Rieser - 通讯作者:
Verena Rieser
What happens if you treat ordinal ratings as interval data? Human evaluations in NLP are even more under-powered than you think
如果将序数评级视为区间数据会发生什么?
- DOI:
10.18653/v1/2021.emnlp-main.703 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
David M. Howcroft;Verena Rieser - 通讯作者:
Verena Rieser
Consistency is Key: Disentangling Label Variation in Natural Language Processing with Intra-Annotator Agreement
一致性是关键:通过注释者内部协议消除自然语言处理中的标签变化
- DOI:
10.48550/arxiv.2301.10684 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Gavin Abercrombie;Verena Rieser;Dirk Hovy - 通讯作者:
Dirk Hovy
Verena Rieser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Verena Rieser', 18)}}的其他基金
Designing Conversational Assistants to Reduce Gender Bias
设计对话助理以减少性别偏见
- 批准号:
EP/T023767/1 - 财政年份:2020
- 资助金额:
$ 12.54万 - 项目类别:
Research Grant
MaDrIgAL: MultiDimensional Interaction management and Adaptive Learning
MaDrIgAL:多维交互管理和自适应学习
- 批准号:
EP/N017536/1 - 财政年份:2016
- 资助金额:
$ 12.54万 - 项目类别:
Research Grant
DILiGENt: Domain-Independent Language Generation
DILiGENt:与领域无关的语言生成
- 批准号:
EP/M005429/1 - 财政年份:2015
- 资助金额:
$ 12.54万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Culturally situated immersive virtual learning and engineering design to build STEM capacity in Dine communities
具有文化背景的沉浸式虚拟学习和工程设计,旨在培养餐饮社区的 STEM 能力
- 批准号:
2241802 - 财政年份:2023
- 资助金额:
$ 12.54万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142594 - 财政年份:2022
- 资助金额:
$ 12.54万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142783 - 财政年份:2022
- 资助金额:
$ 12.54万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142439 - 财政年份:2022
- 资助金额:
$ 12.54万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142503 - 财政年份:2022
- 资助金额:
$ 12.54万 - 项目类别:
Standard Grant
CAREER: Modeling Situated Intention during Nondeterministic Pedestrian-Vehicle Interactions through Explainable Compositional Learning of Naturalistic Driving Data
职业:通过自然驾驶数据的可解释组合学习,对非确定性行人-车辆交互过程中的情境意图进行建模
- 批准号:
2145565 - 财政年份:2022
- 资助金额:
$ 12.54万 - 项目类别:
Continuing Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142490 - 财政年份:2022
- 资助金额:
$ 12.54万 - 项目类别:
Standard Grant
Conceptualising patient and public engagement and involvement (PPEI) for commissioning and designing health and care services as situated learning.
将患者和公众的参与和参与(PPEI)概念化,以委托和设计健康和护理服务作为情境学习。
- 批准号:
ES/V012320/1 - 财政年份:2020
- 资助金额:
$ 12.54万 - 项目类别:
Fellowship
A framework for designing Mixed Reality situated learning experiences in cultural heritage sites using AR glasses
使用 AR 眼镜在文化遗产地设计混合现实情境学习体验的框架
- 批准号:
AH/S005692/1 - 财政年份:2019
- 资助金额:
$ 12.54万 - 项目类别:
Fellowship
Reconsideration on the significance of situated learning theory in modern times
情境学习理论的现代意义再思考
- 批准号:
16K17389 - 财政年份:2016
- 资助金额:
$ 12.54万 - 项目类别:
Grant-in-Aid for Young Scientists (B)