Reconstructing broken symmetry
重建破缺对称性
基本信息
- 批准号:EP/M001148/1
- 负责人:
- 金额:$ 12.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Consider the two-dimensional plane. What are its symmetries? We might think of rotations, reflections and translations, together with combinations of these. But might there be others? In fact, there are and we can be sure we have found them all by turning the question into a problem in algebra rather than geometry. By doing so, we find that every symmetry of the plane is a combinations of linear transformations (which include all of those mentioned above) and a further family of generalised (non-linear) shears.The translation into a problem in algebra is achieved by considering the so-called coordinate algebra of the geometric space. A symmetry of the space then precisely corresponds to an automorphism of the coordinate algebra. An automorphism of an algebra is a map from the algebra to itself that preserves the additive and multiplicative structure of the algebra and that has an inverse - just as a symmetry is a map from the space to itself which preserves geometric structure (e.g. angles and lengths) and is "undo-able". The set of automorphisms of an algebra forms a group under composition, so our original question is reformulated as one of describing the automorphism group of the coordinate algebra of our space.This is a classical problem - and is very hard in general. The example of the plane is rather misleading, as for three dimensions and above, the automorphism group has been proved to contain "wild" elements; that is, automorphisms that cannot be described in elementary terms as above.So this is not the problem we propose to address. Rather, our interests lie in the world of noncommutative algebraic geometry. (The coordinate algebras referred to above are in particular commutative algebras.) Here there is a well-known but not well understood phenomenon of symmetry breaking. Noncommutative or "quantum" spaces are usually more rigid than their classical commutative counterparts, in the sense that they have fewer symmetries. More precisely, noncommutative coordinate algebras typically have smaller automorphism groups.This leads naturally to the following question: where has the symmetry gone? The aim of this project is to provide an answer, showing that the "hidden" symmetries are recoverable as isomorphisms between different quantizations of the space. In technical language, we have an automorphism groupoid ("a group with many objects") that reduces to the original automorphism group in the classical limit. Constructing this groupoid, even for small examples, requires techniques from the spectrum of pure mathematics, includng noncommutative algebra, algebraic geometry and cohomology theory among others.Our goal is to fully understand this groupoid for certain quantizations. Specifically, we shall consider the plane, higher-dimensional affine spaces and some other carefully chosen examples. In doing so we shall develop general theory that can be applied to many further spaces and their quantizations.
考虑二维平面。它的对称性是什么?我们可能会想到旋转、反射和平移,以及它们的组合。但可能还有其他人吗?事实上,有,我们可以肯定,我们已经找到了他们所有的问题,把这个问题变成一个问题,在代数,而不是几何。通过这样做,我们发现平面的每一个对称性都是线性变换(包括上面提到的所有变换)和另一个广义(非线性)剪切族的组合。通过考虑几何空间的所谓坐标代数,可以实现将其转化为代数问题。空间的对称性则精确地对应于坐标代数的自同构。代数的自同构是从代数到自身的映射,它保持代数的加法和乘法结构,并且具有逆-就像对称是从空间到自身的映射,它保持几何结构(例如角度和长度)并且是“可撤销的”。一个代数的自同构集合在复合下形成一个群,所以我们原来的问题被重新表述为描述我们空间的坐标代数的自同构群的问题。这是一个经典问题--一般来说非常困难。平面的例子是相当误导的,因为对于三维及以上的空间,自同构群已被证明包含“野生”元素;也就是说,不能用上述初等术语描述的自同构。相反,我们的兴趣在于世界上的非交换代数几何。(The上面提到的坐标代数特别是交换代数。这里有一个众所周知但尚未被很好理解的对称性破缺现象。非对易空间或“量子”空间通常比经典的对易空间更严格,因为它们的对称性更少。更准确地说,非交换坐标代数通常具有较小的自同构群,这自然会引出下面的问题:对称性到哪里去了?这个项目的目的是提供一个答案,表明“隐藏”的对称性是可恢复的空间的不同量子化之间的同构。在技术语言中,我们有一个自同构群胚(“一个有许多对象的群”),它在经典极限下还原为原始的自同构群。构造这个广群,即使是很小的例子,也需要纯数学的技巧,包括非交换代数,代数几何和上同调理论等。我们的目标是完全理解这个广群的某些量化。具体地说,我们将考虑平面、高维仿射空间和其他一些精心选择的例子。在这样做的时候,我们将开发一般的理论,可以应用到许多进一步的空间和它们的量化。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graded Frobenius Cluster Categories
分级 Frobenius 簇类别
- DOI:10.4171/dm/613
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:Grabowski J
- 通讯作者:Grabowski J
Automorphism groupoids in noncommutative projective geometry
- DOI:10.1016/j.jalgebra.2022.03.045
- 发表时间:2018-07
- 期刊:
- 影响因子:0.9
- 作者:Nicholas J Cooney;J. Grabowski
- 通讯作者:Nicholas J Cooney;J. Grabowski
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Grabowski其他文献
Jan Grabowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Grabowski', 18)}}的其他基金
Schubert calculus via cluster categories
通过簇类别的舒伯特微积分
- 批准号:
EP/W017881/1 - 财政年份:2022
- 资助金额:
$ 12.57万 - 项目类别:
Research Grant
相似海外基金
Scientific principle construction of two-dimensional liquid with broken inversion symmetry
反演对称性破缺二维液体的科学原理构建
- 批准号:
23K17366 - 财政年份:2023
- 资助金额:
$ 12.57万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Strategic design of antiferromagnets with broken time reversal symmetry
破缺时间反转对称性反铁磁体的策略设计
- 批准号:
23K19029 - 财政年份:2023
- 资助金额:
$ 12.57万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Numerical study on critical properties of topological quantum systems with broken translational symmetry
平动对称性破缺拓扑量子系统临界性质的数值研究
- 批准号:
22K03446 - 财政年份:2022
- 资助金额:
$ 12.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of novel superconducting state with broken time-reversal symmetry
时间反演对称性破缺的新型超导态研究
- 批准号:
22H00105 - 财政年份:2022
- 资助金额:
$ 12.57万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Systematic study of restoration of broken chiral symmetry
手性对称性破缺修复的系统研究
- 批准号:
21H01102 - 财政年份:2021
- 资助金额:
$ 12.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of nonlinear terahertz response in Weyl semimetals with broken inversion symmetry
反演对称性破缺的Weyl半金属非线性太赫兹响应研究
- 批准号:
21K13858 - 财政年份:2021
- 资助金额:
$ 12.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Material design and electrical manipulation of antiferromagnets with broken time-reversal symmetry
时间反转对称性破缺的反铁磁体的材料设计和电操控
- 批准号:
21H04990 - 财政年份:2021
- 资助金额:
$ 12.57万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Exploration of novel material functions utilizing angular momentum conversion in symmetry-broken magnets
利用对称破缺磁体中的角动量转换探索新颖的材料功能
- 批准号:
21H01036 - 财政年份:2021
- 资助金额:
$ 12.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Novel Spintronics Devices based on symmetry-broken systems
职业:基于对称破缺系统的新型自旋电子器件
- 批准号:
2047118 - 财政年份:2021
- 资助金额:
$ 12.57万 - 项目类别:
Continuing Grant
Enhancement of spin orbit torque by introducing the broken inversion symmetry and development of 3-dimensional magenetic memory
通过引入破缺反演对称性增强自旋轨道扭矩和3维磁记忆的发展
- 批准号:
20H02182 - 财政年份:2020
- 资助金额:
$ 12.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)