Data Analytics for Future Cities
未来城市的数据分析
基本信息
- 批准号:EP/M00158X/2
- 负责人:
- 金额:$ 8.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The "Internet of Things" is a phrase describing the set of technologies, systems and methodologies that underpin the spread of internet-enabled applications. Ultimately, the Internet of Things will involve physical objects seamlessly integrating into the information network for social and economic benefit.At the heart of the Internet of Things is data---digital records of human, technological and natural interactions. The data streams are large-scale, varied and rapidly changing. In addition to the important, but conceptually simple, tasks of gathering, storing and sharing this data, there is a pressing need to develop powerful and efficient computational algorithms that can extract insights and make useful predictions. This proposal will add to the "cleverness" that is needed to exploit fully the data deluge. Technology evolves rapidly. The look, feel and functionality of smartphones, tablets, notebooks and desktop PCs have changed dramatically in recent years, and there is a range of new technologies such as wearable devices, smart glasses and implantable sensors. Many of these will add to the technological revolution, before themselves being superseded. However, the challenge of analysing and exploiting the vast realms of data produced by the Internet of Things is universal, and the mathematical concepts and resulting algorithms that underpin these new technologies are fundamental and have very long-term value.My proposal will develop new analytical concepts that lead to computational algorithms. The results will be aimed directly at the application of Future Cities research---improving the social, environmental and economic aspects of city living. The University of Strathclyde is home to a City Observatory that collects a huge amount of data from the city of Glasgow, including air quality sensors, traffic information, energy usage and measurements of many aspects of human behaviour, such as on-line activity, social media interactions, CCTV data and retail footfall counts. Indeed, Glasgow received £24M of government funding to become the UK's pilot city for this type of digitally-driven enhancement. The research project therefore focusses on new concepts and algorithms that can help us to understand the very large, fast-moving streams of data describing the interactions between the components that make up the Internet of Things: people, devices and sensors. Just as Google began with a clever mathematical algorithm, PageRank, that was able to bring order to the world wide web, we aim to develop new algorithms that can summarize these vast quantities of data. The work will take place alongside stakeholders in the Future Cities arena: fellow-researchers in social science; SMEs who deliver data analytics solutions to clients in advertising, finance, entertainment, publishing; external partners in hi-tech industry who deliver larger-scale IT solutions; local and national government employees who serve the community. Through a range of knowledge exchange and outreach events, these stakeholders will have the opportunity to critically evaluate and feedback on the results and rapidly deploy the new ideas. Some illustrative applications that the research will address are: characterising the social media traits of different user bases, such as drivers/cyclists/pedestrians, to predict the best way to target messages at each group, stratifying the population of city users according to their portfolio of work/leisure/shopping community memberships in order to maximise the usage of energy/space resources in the city,predicting crowd levels and crowd behaviour at forthcoming public events,monitoring the public perception of an ongoing campaign, such as a cycle-to-work-scheme,monitoring and reacting in real time to the public response in relation to a planned disruption, such as a political march, or an unpredictable event, such as a traffic incident.
“物联网”是一个短语,描述了支撑互联网应用传播的一套技术、系统和方法。最终,物联网将涉及将物理对象无缝地整合到信息网络中,以实现社会和经济效益。物联网的核心是数据-人类、技术和自然互动的数字记录。数据流规模大、变化大、变化快。除了收集、存储和共享这些数据的重要但概念上简单的任务外,迫切需要开发强大而高效的计算算法,以提取洞察力并做出有用的预测。这一提议将增加充分利用数据洪流所需的“智慧”。科技发展日新月异。近年来,智能手机、平板电脑、笔记本电脑和台式电脑的外观、手感和功能发生了巨大变化,出现了一系列新技术,如可穿戴设备、智能眼镜和植入式传感器。其中许多将在被取代之前增加到技术革命中。然而,分析和利用物联网产生的巨大数据领域的挑战是普遍存在的,而支撑这些新技术的数学概念和由此产生的算法是基本的,具有非常长期的价值。我的提议将发展新的分析概念,导致计算算法。结果将直接针对未来城市研究的应用-改善城市生活的社会、环境和经济方面。斯特拉斯克莱德大学是城市天文台的所在地,该天文台从格拉斯哥市收集大量数据,包括空气质量传感器、交通信息、能源使用情况和人类行为的许多方面的测量,如在线活动、社交媒体互动、闭路电视数据和零售客流量。事实上,格拉斯哥获得了2400万GB的政府资金,成为英国这种由数字驱动的增强技术的试点城市。因此,该研究项目将重点放在新的概念和算法上,这些概念和算法可以帮助我们理解描述组成物联网的组件:人、设备和传感器之间的交互的非常大的、快速移动的数据流。正如谷歌从一种聪明的数学算法PageRank开始,它能够给万维网带来秩序一样,我们的目标是开发能够汇总这些海量数据的新算法。这项工作将与未来城市领域的利益相关者一起开展:社会科学同行;为广告、金融、娱乐、出版客户提供数据分析解决方案的中小企业;提供更大规模IT解决方案的高科技行业外部合作伙伴;服务社区的地方和国家政府雇员。通过一系列知识交流和外联活动,这些利益攸关方将有机会对结果进行批判性评估和反馈,并迅速采用新想法。这项研究将解决的一些说明性应用是:表征不同用户群的社交媒体特征,例如司机/骑自行车/行人,以预测针对每个群体的消息的最佳方式;根据他们的工作/休闲/购物社区成员组合对城市用户人口进行分层,以便最大限度地利用城市中的能源/空间资源;预测即将到来的公共活动中的人群水平和人群行为;监测公众对正在进行的运动的感知,例如骑自行车到工作计划;监测和实时反应与计划的扰乱有关的公众反应,例如政治游行或不可预测的事件,例如交通事故。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-backtracking PageRank
非回溯PageRank
- DOI:10.1007/s10915-019-00981-8
- 发表时间:2019
- 期刊:
- 影响因子:2.5
- 作者:Arrigo F
- 通讯作者:Arrigo F
ON CONSTRAINED LANGEVIN EQUATIONS AND (BIO)CHEMICAL REACTION NETWORKS
- DOI:10.1137/18m1190999
- 发表时间:2019-01-01
- 期刊:
- 影响因子:1.6
- 作者:Anderson, David F.;Higham, Desmond J.;Williams, Ruth J.
- 通讯作者:Williams, Ruth J.
Non-Backtracking Alternating Walks
非回溯交替行走
- DOI:10.1137/18m1183698
- 发表时间:2019
- 期刊:
- 影响因子:1.9
- 作者:Arrigo F
- 通讯作者:Arrigo F
Deep Learning: An Introduction for Applied Mathematicians
- DOI:10.1137/18m1165748
- 发表时间:2019-12-01
- 期刊:
- 影响因子:10.2
- 作者:Higham, Catherine F.;Higham, Desmond J.
- 通讯作者:Higham, Desmond J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Desmond Higham其他文献
Desmond Higham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Desmond Higham', 18)}}的其他基金
Mathematics of Adversarial Attacks
对抗性攻击的数学
- 批准号:
EP/V046527/1 - 财政年份:2021
- 资助金额:
$ 8.57万 - 项目类别:
Research Grant
MOLTEN: Mathematics Of Large Technological Evolving Networks
MOLTEN:大型技术演进网络的数学
- 批准号:
EP/I016058/1 - 财政年份:2011
- 资助金额:
$ 8.57万 - 项目类别:
Research Grant
Complex Brain Networks in Health, Development and Disease
健康、发育和疾病中的复杂大脑网络
- 批准号:
G0601353/1 - 财政年份:2007
- 资助金额:
$ 8.57万 - 项目类别:
Research Grant
Theory and Tools for Complex Biological Systems
复杂生物系统的理论和工具
- 批准号:
EP/E049370/1 - 财政年份:2007
- 资助金额:
$ 8.57万 - 项目类别:
Research Grant
相似海外基金
Human Tutoring Augmented by Artificial Intelligence (AI): A Tutoring Analytics and Performance Support Model to Improve the Work and Professional Growth of Future Tutors
人工智能 (AI) 增强的人工辅导:一种辅导分析和绩效支持模型,可改善未来辅导员的工作和专业成长
- 批准号:
2222647 - 财政年份:2022
- 资助金额:
$ 8.57万 - 项目类别:
Standard Grant
Building the Capacity of Future Teachers through Authentic Research Experiences Involving Data Analytics
通过涉及数据分析的真实研究经验培养未来教师的能力
- 批准号:
2150702 - 财政年份:2022
- 资助金额:
$ 8.57万 - 项目类别:
Standard Grant
Future blood testing for inclusive monitoring and personalised analytics Network+
未来血液检测的包容性监测和个性化分析网络
- 批准号:
EP/W000652/1 - 财政年份:2021
- 资助金额:
$ 8.57万 - 项目类别:
Research Grant
Intelligent Log Analytics for Predicting Future Run-Time Issues
用于预测未来运行时问题的智能日志分析
- 批准号:
543528-2019 - 财政年份:2021
- 资助金额:
$ 8.57万 - 项目类别:
Collaborative Research and Development Grants
Practical and Explainable Analytics to Prevent Future Software Defects
实用且可解释的分析,以防止未来的软件缺陷
- 批准号:
DE200100941 - 财政年份:2020
- 资助金额:
$ 8.57万 - 项目类别:
Discovery Early Career Researcher Award
B1 (Future Jobs and AI): Skill-XR: An Affordable and Scalable X-Reality (XR) Platform for Skills Training and Analytics in Manufacturing Workforce Education
B1(未来工作和人工智能):Skill-XR:一个经济实惠且可扩展的 X-Reality (XR) 平台,用于制造业劳动力教育中的技能培训和分析
- 批准号:
2033615 - 财政年份:2020
- 资助金额:
$ 8.57万 - 项目类别:
Cooperative Agreement
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
- 批准号:
1955721 - 财政年份:2020
- 资助金额:
$ 8.57万 - 项目类别:
Standard Grant
FANTASIA - Future Aircraft Noise Technologies And Systems Integration Analytics
FANTASIA - 未来飞机噪声技术和系统集成分析
- 批准号:
74217 - 财政年份:2020
- 资助金额:
$ 8.57万 - 项目类别:
BEIS-Funded Programmes
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
- 批准号:
1956021 - 财政年份:2020
- 资助金额:
$ 8.57万 - 项目类别:
Standard Grant
Intelligent Log Analytics for Predicting Future Run-Time Issues
用于预测未来运行时问题的智能日志分析
- 批准号:
543528-2019 - 财政年份:2020
- 资助金额:
$ 8.57万 - 项目类别:
Collaborative Research and Development Grants














{{item.name}}会员




