MOLTEN: Mathematics Of Large Technological Evolving Networks

MOLTEN:大型技术演进网络的数学

基本信息

  • 批准号:
    EP/I016058/1
  • 负责人:
  • 金额:
    $ 23.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Connections are important. In studying nature, technology, commerce and the social sciences it often makes sense to focus on the pattern of interactions between individual components. Within the UK's Digital Economy activities, for example, large, complex networks arisein energy: connecting power suppliers and users,in telecommunications: connecting mobile phone users,in transport: connecting train stations, airports or ports,in the World Wide Web: connecting web pages,in one-line social networking connecting cyberfriends, in retail trade: connecting sales of different products to the same customer.Improvements in computing power have made it possible to gather, store and analyze large data sets, especially in the areas of fast moving consumer goods (who bought what), telecommunications (who phoned who), mobile devices (who travelled where) , on-line social networks (who Twittered to who) and energy (who switched on when). The interdisciplinary field of Network Science has emerged as a means to understand and quantify these large networks and to extract useful information. By focussing on the underlying connectivity, mathematical techniques can be used to address common questions:Can we discover clusters of strongly connected individuals? This would allow us to break the network down into meaningful subunits.Do the network properties change when links are added or removed? This determines robustness/efficiency to attack/disease/malfunction and stability under evolution.Are some individuals or links especially important? `Hubs' are individuals with high-quality connections (e.g. web pages highly ranked by Google), `short-cuts' are links that join distinct subnetworks and `bottlenecks' are specific links that may become overloaded.Can we develop mathematical models that reproduce the features of a complex network?Given observed output (such as queuing times in a dynamic communication network) can we discover underlying, hidden, connectivity in a complex system?This proposal aims to add value to this important area by addressing an important feature that has fo far received very little attention from the mathematical community. Technological networks vary over time, and this dynamic element has important consequences. For example, if A phones B today and B phones C tomorrow, then a message may pass from A to C, but not from C to A. So there is an immediate lack of symmetry that makes much of the existing theory obsolete. .Moreover, the patterns of connectivity that we see today may be different tomorrow. So there is built-in uncertainty about the future. In this proposal we will develop new mathematical techniques to study the type of dynamically evolving networks that are relevant in the Digital Economy, allowing researchers to discover the important players, quantify the efficiency of a network and predict future behaviour. These ideas offer immediate benefits outside academia, allowing us to tackle questions such as: who are the important broadcasters or receivers of information? who should we target our advertising campaign at? what will the network look like next week or next year? is there any suspicious activity today? which networks users appear to be underage? which customers are likely to change brand loyalty? how quickly will a rumour or virus spread? what would be the effect of changing the way that customers are charged for network usage? Our objectives are to develop to practical, quantitative solutions to these issues by developing a new, underpinning mathematical framework that leads directly to useful computer software. In order to make sure that the results will have immediate benefit, we have put together a team of non-academic experts who use large technological networks in their businesses. These people will provide realistic data sets, pose specific challenges and provide regular feedback and advice throughout the project.
连接很重要。在研究自然、技术、商业和社会科学时,关注各个组成部分之间的相互作用模式往往是有意义的。例如,在英国的数字经济活动中,大型复杂网络出现在能源领域:连接电力供应商和用户;电信领域:连接移动的电话用户;交通领域:连接火车站、机场或港口;万维网领域:连接网页;单线社交网络领域:连接网友;零售贸易领域:计算能力的提高使得收集、存储和分析大型数据集成为可能,特别是在快速消费品领域。(谁买了什么),电信(谁给谁打电话),移动的设备(谁去哪里旅行),在线社交网络(谁给谁发推特)和能源(谁什么时候开机)。网络科学的跨学科领域已经成为理解和量化这些大型网络并提取有用信息的一种手段。通过关注潜在的连通性,数学技术可以用来解决常见的问题:我们能发现强连接个体的集群吗?这将使我们能够将网络分解为有意义的子单元。当添加或删除链接时,网络属性是否会发生变化?这决定了对攻击/疾病/故障的鲁棒性/效率和进化下的稳定性。“枢纽”是指具有高质量连接的个人(例如,被Google排名靠前的网页),“捷径”是指连接不同子网的链接,“瓶颈”是指可能过载的特定链接。给定观察到的输出(如动态通信网络中的排队时间),我们能否发现复杂系统中潜在的、隐藏的连通性?这项建议旨在通过解决一个迄今为止很少受到数学界关注的重要特征来增加这一重要领域的价值。技术网络随着时间的推移而变化,这种动态因素具有重要的影响。例如,如果A今天给B打电话,而B明天给C打电话,那么消息可能从A传到C,但不能从C传到A。因此,对称性的缺乏使得现有的许多理论过时了。此外,我们今天看到的连通模式明天可能会有所不同。因此,未来存在内在的不确定性。在这项提案中,我们将开发新的数学技术来研究与数字经济相关的动态演变网络类型,使研究人员能够发现重要的参与者,量化网络的效率并预测未来的行为。这些想法在学术界之外提供了直接的好处,使我们能够解决这样的问题:谁是重要的信息传播者或接收者?我们的广告活动应该针对谁?下周或明年的网络会是什么样子?今天有什么可疑活动吗哪些网络用户似乎未成年?哪些顾客可能会改变品牌忠诚度?谣言或病毒传播速度有多快?改变向客户收取网络使用费的方式会产生什么影响?我们的目标是通过开发一个新的,基础的数学框架,直接导致有用的计算机软件来开发这些问题的实用,定量的解决方案。为了确保研究结果能够立即产生效益,我们组建了一个由非学术专家组成的团队,他们在业务中使用大型技术网络。这些人将提供真实的数据集,提出具体的挑战,并在整个项目中提供定期反馈和建议。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ranking hubs and authorities using matrix functions
  • DOI:
    10.1016/j.laa.2012.10.022
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Benzi, Michele;Estrada, Ernesto;Klymko, Christine
  • 通讯作者:
    Klymko, Christine
Inverse network sampling to explore online brand allegiance
逆网络抽样探索在线品牌忠诚度
A Matrix Iteration for Dynamic Network Summaries
  • DOI:
    10.1137/110855715
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    10.2
  • 作者:
    Grindrod, Peter;Higham, Desmond J.
  • 通讯作者:
    Higham, Desmond J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Desmond Higham其他文献

Desmond Higham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Desmond Higham', 18)}}的其他基金

Disease Spread at High Order
疾病高水平传播
  • 批准号:
    EP/W011093/1
  • 财政年份:
    2022
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
Mathematics of Adversarial Attacks
对抗性攻击的数学
  • 批准号:
    EP/V046527/1
  • 财政年份:
    2021
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
Data Analytics for Future Cities
未来城市的数据分析
  • 批准号:
    EP/M00158X/2
  • 财政年份:
    2019
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Fellowship
Data Analytics for Future Cities
未来城市的数据分析
  • 批准号:
    EP/M00158X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Fellowship
Complex Brain Networks in Health, Development and Disease
健康、发育和疾病中的复杂大脑网络
  • 批准号:
    G0601353/1
  • 财政年份:
    2007
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
Theory and Tools for Complex Biological Systems
复杂生物系统的理论和工具
  • 批准号:
    EP/E049370/1
  • 财政年份:
    2007
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant

相似国自然基金

普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
  • 批准号:
    12226506
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
数学之源书(Source book in mathematics)的翻译与出版
  • 批准号:
    11826405
  • 批准年份:
    2018
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
怀尔德“Mathematics as a cultural system”翻译研究
  • 批准号:
    11726404
  • 批准年份:
    2017
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
Frontiers of Mathematics in China
  • 批准号:
    11024802
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

The Chemistry and Mathematics Introductory Large-Enrollment Courses Forum
化学与数学入门大招生论坛
  • 批准号:
    2232453
  • 财政年份:
    2022
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Standard Grant
Building Sustainable Networked Instructional Leadership in Elementary Mathematics through a University Partnership with a Large Urban District
通过与大城市地区的大学合作建立可持续的基础数学网络化教学领导力
  • 批准号:
    1813048
  • 财政年份:
    2018
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Continuing Grant
Study on mathematics and science achievement in developing countries by analyzing large-scale assessment
通过分析大规模评估研究发展中国家的数学和科学成就
  • 批准号:
    16K17460
  • 财政年份:
    2016
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Establishing the foundation of discrete mathematics in the field of architecture and urban planning and its application to large-scale optimization
建立建筑和城市规划领域的离散数学基础及其在大规模优化中的应用
  • 批准号:
    25240004
  • 财政年份:
    2013
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
MOLTEN: Mathematics Of Large Technological Evolving Networks
MOLTEN:大型技术演进网络的数学
  • 批准号:
    EP/I017321/1
  • 财政年份:
    2011
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
MOLTEN: Mathematics Of Large Technological Evolving Networks
MOLTEN:大型技术演进网络的数学
  • 批准号:
    EP/I016031/1
  • 财政年份:
    2011
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Research Grant
FRG: Collaborative Research: Mathematics of large scale urban crime
FRG:合作研究:大规模城市犯罪的数学
  • 批准号:
    0968309
  • 财政年份:
    2010
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Standard Grant
Large Empirical Research Project in the Contextual Research Strand: The First Five Years of Mathematics Teaching
情境研究领域的大型实证研究项目:数学教学的前五年
  • 批准号:
    0910001
  • 财政年份:
    2010
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Mathematics of large scale urban crime
FRG:合作研究:大规模城市犯罪的数学
  • 批准号:
    0968382
  • 财政年份:
    2010
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Standard Grant
An empirical study of efficacy of our high school mathematics textbook which plans high large cooperation of high schools and universities
我国高中数学教材规划高中大合作成效实证研究
  • 批准号:
    19500738
  • 财政年份:
    2007
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了