Development of Automated Parallel CO2 Supercritical Fluid Chromatography for Use in Continuous Flow Chemical Synthesis
开发用于连续流动化学合成的自动平行 CO2 超临界流体色谱
基本信息
- 批准号:EP/M004120/1
- 负责人:
- 金额:$ 71.96万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There has been a significant shift in focus within the scientific community over the previous few years towards practices that are more environmentally accessible and sustainable, driven largely by increased awareness of the impacts of current practice, governmental legislation and increasing costs of waste disposal (most especially solvents). In the chemistry world there are increasing demands for greater efficiencies, lower solvent use, lower energy consumption and improved processes. Wasteful and time-consuming practices are no longer acceptable, forcing chemists to be more responsible for their actions. The EPSRC has acknowledged the importance of this shift and is actively promoting it through the creation of a series of 'Grand Challenges' including Dial-a-Molecule (100% efficient synthesis) and CO2Chem (utilising CO2 for chemical synthesis). Unusually, although computer-aided processes and electronic automation have been shown to be effective in other sectors at increasing efficiency and minimising costs, chemistry as a science has been slow on the uptake of new technology designed to assist chemists in routine tasks. In the traditional research environment, this can be seen most clearly by the lack of computer assistance in even the most ordinary of tasks such as titrations, crystallisations, extractions or distillations. When looking at more complex activities such as the identification, optimisation and analysis of new reactions, the situation is even worse. This must change if we are to move chemistry forward. Our research group has consistently pioneered novel methods in chemical synthesis and we are well positioned to deliver a new vision that will lead the way in addressing the present constraints and limitations of how we work in the laboratory today. Our vision of the Lab of the Future is one that breaks away from inefficient traditions and pushes the boundaries of what is possible in chemical synthesis by combining modern-day computing power with the most useful of software developments in order to intelligently combine synthesis procedures.During the last few years there has been a significant amount of effort expended in the development of new flow synthesis enabling tools, most notably in the area of enhancing reaction capability. At the same time new in-line detection methods are being developed, with desktop NMR spectrometers and in-line miniature MS detectors providing extensive chemical structure data rapidly for compounds produced in flow. Despite the increase in these new enabling tools coming onto the market, there has been little focus on essential continuous downstream processing tools such as work-up cycles and chromatography.In situations where compounds having similar chemical properties need to be separated, chromatography is usually the method of choice. Researchers are easily able to use semi-preparative and preparative HPLC to separate compounds reasonably quickly. The use of manual column chromatography and semi-automated flash chromatography is commonplace. However for multi-component, complex mixtures there exist no solutions for in-line continuous separation of compounds, especially on an R&D scale. There are huge conveniences to being able to chromatograph compounds in-line (e.g. in a continuous flow multistep reaction sequence) and it is additionally attractive in terms of many benefits and economies that can be obtained. At the current time, however, there exist no devices that can conveniently achieve this in the research environment; the basis of our proposal therefore is to meet such a need: to design, build and develop the first parallel column SFC separation device for use in-line, at the R&D scale of synthesis, in flow chemistry applications. Utilising CO2 supercritical fluid chromatography enables rapid separations in a sustainable and environmentally friendly manner while fulfilling an unmet need in downstream processing.
在过去几年中,科学界的重点发生了重大转变,转向更环保和更可持续的做法,这主要是由于对当前做法的影响、政府立法和废物处理(特别是溶剂)成本增加的认识有所提高。在化学领域,对更高的效率、更低的溶剂使用、更低的能耗和改进的工艺的需求日益增加。浪费和耗时的做法不再被接受,迫使化学家对他们的行为更加负责。EPSRC已经认识到这一转变的重要性,并通过创建一系列“大挑战”来积极推动这一转变,包括Dial-a-Molecule(100%高效合成)和CO2 Chem(利用CO2进行化学合成)。不同寻常的是,尽管计算机辅助过程和电子自动化在其他领域已被证明是有效的,可以提高效率和降低成本,但化学作为一门科学,在吸收旨在帮助化学家完成日常任务的新技术方面一直进展缓慢。在传统的研究环境中,这一点可以通过缺乏计算机辅助来清楚地看到,即使是最普通的任务,如滴定,结晶,萃取或蒸馏。当考虑更复杂的活动时,例如识别,优化和分析新反应,情况甚至更糟。如果我们要推动化学向前发展,这种情况必须改变。我们的研究小组一直在开创化学合成的新方法,我们有能力提供一个新的愿景,这将导致解决目前的约束和限制,我们如何在实验室工作的今天。我们对未来实验室的愿景是摆脱低效的传统,通过将现代计算能力与最有用的软件开发相结合,以智能地组合联合收割机合成程序,推动化学合成的可能性。在过去的几年中,在开发新的流动合成使能工具方面投入了大量的精力,最显著的是在提高反应能力的领域。与此同时,新的在线检测方法正在开发中,台式NMR光谱仪和在线微型MS检测器可以快速提供流动中产生的化合物的广泛化学结构数据。尽管市场上出现了越来越多的新的辅助工具,但人们很少关注必要的连续下游处理工具,如后处理循环和色谱法。在需要分离具有相似化学性质的化合物的情况下,色谱法通常是首选方法。研究人员可以很容易地使用半制备型和制备型HPLC来合理快速地分离化合物。手动柱色谱法和半自动快速色谱法的使用是常见的。然而,对于多组分、复杂的混合物,不存在用于化合物的在线连续分离的解决方案,特别是在研发规模上。能够在线色谱分离化合物(例如,在连续流多步反应序列中)具有巨大的便利性,并且就可以获得的许多益处和经济性而言,它另外具有吸引力。然而,在目前的时间,有没有设备,可以方便地实现这一点,在研究环境中,因此,我们的建议的基础是满足这样的需求:设计,建造和开发的第一个平行柱SFC分离装置在线使用,在R&D规模的合成,在流动化学应用。利用CO2超临界流体色谱能够以可持续和环境友好的方式进行快速分离,同时满足下游加工中未满足的需求。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous flow hydration of pyrazine-2-carbonitrile in a manganese dioxide column reactor
二氧化锰塔反应器中吡嗪-2-甲腈的连续流动水合
- DOI:10.17863/cam.7736
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Battilocchio C
- 通讯作者:Battilocchio C
Continuous Preparation and Use of Dibromoformaldoxime as a Reactive Intermediate for the Synthesis of 3-Bromoisoxazolines
- DOI:10.1021/acs.oprd.7b00229
- 发表时间:2017-10-01
- 期刊:
- 影响因子:3.4
- 作者:Battilocchio, Claudio;Bosica, Francesco;Ley, Steven V.
- 通讯作者:Ley, Steven V.
Flow synthesis of cyclobutanones $\textit{via}$ [2 + 2] cycloaddition of keteneiminium salts and ethylene gas
环丁酮的流动合成 $ extit{via}$ [2 2] 烯酮亚胺盐和乙烯气体的环加成
- DOI:10.17863/cam.8270
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Battilocchio C
- 通讯作者:Battilocchio C
Unveiling the role of boroxines in metal-free carbon-carbon homologations using diazo compounds and boronic acids.
- DOI:10.1039/c7sc02264f
- 发表时间:2017-09-01
- 期刊:
- 影响因子:8.4
- 作者:Bomio C;Kabeshov MA;Lit AR;Lau SH;Ehlert J;Battilocchio C;Ley SV
- 通讯作者:Ley SV
Unveiling the role of boroxines in metal-free carbon-carbon homologations using diazo compounds and boronic acids
使用重氮化合物和硼酸揭示环硼氧烷在无金属碳-碳同系物中的作用
- DOI:10.17863/cam.10317
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Bomio-Confaglia C
- 通讯作者:Bomio-Confaglia C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Ley其他文献
Steven Ley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Ley', 18)}}的其他基金
Fully-Integrated Continuous Flow Processes for Access to Forbidden Chemistries, New Reactivities and Sequential Complexity Generation
用于获取禁用化学物质、新反应性和顺序复杂性生成的完全集成的连续流程
- 批准号:
EP/K009494/1 - 财政年份:2013
- 资助金额:
$ 71.96万 - 项目类别:
Research Grant
The Development of Conveniently Formatted Solid-Supported Reagents for Flow-Based Synthesis
用于流式合成的方便格式化的固相支持试剂的开发
- 批准号:
EP/G028125/1 - 财政年份:2009
- 资助金额:
$ 71.96万 - 项目类别:
Research Grant
相似海外基金
A Combined and Automated High Throughput Parallel Peptide Synthesis Platform.
组合式自动化高通量平行肽合成平台。
- 批准号:
MR/X012344/1 - 财政年份:2022
- 资助金额:
$ 71.96万 - 项目类别:
Research Grant
MRI: Development of a fully automated, 1,000-MicroChemostat microfluidic system for parallel, independent, long-duration, machine-guided experiments
MRI:开发全自动、1,000-MicroChemostat 微流体系统,用于并行、独立、长时间、机器引导实验
- 批准号:
2117782 - 财政年份:2021
- 资助金额:
$ 71.96万 - 项目类别:
Standard Grant
Automated Parallel Bioreactor Systems for High Throughput Optimization of Bioengineered Processes
用于生物工程过程高通量优化的自动化并行生物反应器系统
- 批准号:
RTI-2021-00463 - 财政年份:2020
- 资助金额:
$ 71.96万 - 项目类别:
Research Tools and Instruments
Automated performance optimization based on post-mortem parallel performance analysis
基于事后并行性能分析的自动性能优化
- 批准号:
2297349 - 财政年份:2019
- 资助金额:
$ 71.96万 - 项目类别:
Studentship
PFI:AIR - TT: Automated Out-of-Core Execution of Parallel Message-Passing Applications
PFI:AIR - TT:并行消息传递应用程序的自动核外执行
- 批准号:
1414153 - 财政年份:2014
- 资助金额:
$ 71.96万 - 项目类别:
Standard Grant
Automated Parallel Synthesis of Cyclic Peptide Libraries for Drug Discovery in the Ubiquitin-Proteasome System
用于泛素-蛋白酶体系统中药物发现的环肽库的自动并行合成
- 批准号:
256006 - 财政年份:2012
- 资助金额:
$ 71.96万 - 项目类别:
Fellowship Programs
An automated micromanipulation system for 3d parallel microassembly
用于 3d 并行微装配的自动化微操作系统
- 批准号:
379290-2009 - 财政年份:2010
- 资助金额:
$ 71.96万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Parallel Software for Fast, Automated Determination of Virus Structures
用于快速、自动确定病毒结构的并行软件
- 批准号:
8277895 - 财政年份:2010
- 资助金额:
$ 71.96万 - 项目类别:
Parallel Software for Fast, Automated Determination of Virus Structures
用于快速、自动确定病毒结构的并行软件
- 批准号:
7785214 - 财政年份:2010
- 资助金额:
$ 71.96万 - 项目类别:
Parallel Software for Fast, Automated Determination of Virus Structures
用于快速、自动确定病毒结构的并行软件
- 批准号:
8075461 - 财政年份:2010
- 资助金额:
$ 71.96万 - 项目类别:














{{item.name}}会员




