Computational PLatform for Assessment of Cognition In Dementia (C-PLACID)

痴呆症认知评估计算平台 (C-PLACID)

基本信息

  • 批准号:
    EP/M006093/1
  • 负责人:
  • 金额:
    $ 182.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Cognitive impairment is the hallmark of dementia. Cognitive problems, such as difficulties with memory, language and reasoning, are the most obvious, frustrating and debilitating aspects of most neurodegenerative diseases. As a result, assessment of a person's cognition is a vital component of both diagnostic services and research investigations, and is the most common outcome measure by which the effectiveness of potential pharmaceutical and non-pharmaceutical therapies is judged. However, many traditional paper-and-pencil cognitive assessments have a number of limitations, including the lack of independence across tests, the qualitative nature of cognitive profiling, the influence of practice effects, a failure to capture some critical aspects of performance, a limited dynamic range, the complexity of some test instructions, and their inability to adequately assess some domains of cognition. Whilst sophisticated computational techniques are now used routinely to analyze neuroimaging data about changes in the shape of the brain, there have been few attempts to use comparable techniques to understand complex cognitive datasets. Here we attempt to redress that imbalance by harnessing engineering, computational statistics and mathematics to improve the cognitive assessment of people with or at risk from dementia. The current project aims to develop a computational platform to support substantial improvements in the analysis and visualisation of complex cognitive datasets, and the automatization, optimization and innovation of techniques and devices used to acquire cognitive data. The specific aims of the study represent an interlinked series of engineering solutions to the longstanding cognitive assessment problems highlighted by clinicians. The first set of computational goals are to generate multidimensional cognitive profiles for different dementias by using multivariate machine learning algorithms, and to predict the evolution of cognitive deficits through the implementation of event-based models. The second set of goals relate to attempts to improve existing cognitive tests either by devising ways to measure voice reaction times automatically, implementing psychophysical principles, and utilizing eyetracking to capture additional sensitive metrics of task performance. The third set of goals involve the development of novel testing paradigms including 'instruction-less' tests of cognition suitable for patients with different types and severities of dementia, and the construction of sensors and virtual reality scenarios to measure social cognition.A critical aspect of the project is the availability of four exceptionally well-characterized, longitudinally studied cohorts of individuals with or at risk of dementia in whom to develop and evaluate the new models and algorithms and pilot the improved and novel testing paradigms. The clinical cohorts include individuals with a Familial Alzheimer's disease gene mutation and their non-carrier siblings, people with typical and atypical variants of Alzheimer's disease including the progressive visual syndrome Posterior Cortical Atrophy, and patients with behavioural or linguistic phenotypes of Frontotemporal Dementia. In addition, data from 500 members of the MRC 1946 Birth Cohort whose cognition has been tracked through life and who are now of an age whereby a proportion will be in the early stages of neurodegeneration will also be evaluated.The project involves a richly interdisciplinary team with an exciting blend of established collaborations and new partnerships. The work brings together one of the world's leading dementia units (Dementia Research Centre) with three other high profile UCL departments, namely UCL Computer Science, the Centre for Medical Image Analysis, and the UCL Interaction Centre. The experts from these centres will work together with collaborators and patient and carer support groups to improve the study and implement its findings.
认知障碍是痴呆症的标志。认知问题,如记忆、语言和推理困难,是大多数神经退行性疾病最明显、最令人沮丧和最令人衰弱的方面。因此,对一个人的认知的评估是诊断服务和研究调查的重要组成部分,也是判断潜在药物和非药物治疗有效性的最常见的结果指标。然而,许多传统的纸笔认知评估有许多局限性,包括缺乏独立的测试,认知分析的定性性质,实践效果的影响,未能捕捉到一些关键方面的表现,有限的动态范围,一些测试指令的复杂性,以及他们无法充分评估认知的一些领域。虽然现在通常使用复杂的计算技术来分析有关大脑形状变化的神经成像数据,但很少有人尝试使用类似的技术来理解复杂的认知数据集。在这里,我们试图通过利用工程、计算统计和数学来纠正这种不平衡,以改善对患有痴呆症或有痴呆症风险的人的认知评估。目前的项目旨在开发一个计算平台,以支持对复杂认知数据集的分析和可视化的实质性改进,以及用于获取认知数据的技术和设备的自动化,优化和创新。这项研究的具体目标代表了一系列相互关联的工程解决方案,以解决临床医生强调的长期认知评估问题。第一组计算目标是通过使用多变量机器学习算法来生成不同痴呆症的多维认知概况,并通过基于事件的模型的实施来预测认知缺陷的演变。第二组目标涉及通过设计自动测量语音反应时间的方法,实施心理物理学原理,以及利用眼动追踪来捕获任务表现的额外敏感指标来改善现有认知测试的尝试。第三组目标涉及开发新的测试范式,包括适用于不同类型和严重程度的痴呆症患者的“无障碍”认知测试,以及构建传感器和虚拟现实场景来测量社会认知。该项目的一个关键方面是四个非常好的特征,对患有痴呆症或有痴呆症风险的个体进行纵向研究,以开发和评估新的模型和算法,并试点改进和新颖的测试范式。临床队列包括具有家族性阿尔茨海默病基因突变的个体及其非携带者兄弟姐妹,具有阿尔茨海默病的典型和非典型变体的人,包括进行性视觉综合征后皮质萎缩,以及具有额颞叶痴呆的行为或语言表型的患者。此外,还将评估MRC 1946年出生队列中500名成员的数据,这些成员的认知能力已被终生追踪,并且目前所处的年龄段中有一部分将处于神经退行性疾病的早期阶段。该项目涉及一个丰富的跨学科团队,既有合作,又有新的合作伙伴关系。这项工作汇集了世界领先的痴呆症单位之一(痴呆症研究中心)与其他三个高调UCL部门,即UCL计算机科学,医学图像分析中心和UCL互动中心。来自这些中心的专家将与合作者以及患者和护理人员支持团体合作,以改进研究并实施其结果。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding.
  • DOI:
    10.3389/fnins.2017.00062
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Baldassarre L;Pontil M;Mourão-Miranda J
  • 通讯作者:
    Mourão-Miranda J
Virtual reality as an assessment of social cognition in behavioural variant Frontotemporal Dementia: A Pilot Study.
虚拟现实作为行为变异额颞叶痴呆社会认知的评估:一项试点研究。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brotherhood, E. V.
  • 通讯作者:
    Brotherhood, E. V.
Development of the Video Analysis Scale of Engagement (VASE) for people with advanced dementia.
  • DOI:
    10.12688/wellcomeopenres.16189.3
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Lai LL;Crutch SJ;West J;Harding E;Brotherhood EV;Takhar R;Firth N;Camic PM
  • 通讯作者:
    Camic PM
Development of the Video Analysis Scale of Engagement (VASE) for people with advanced dementia
为晚期痴呆症患者开发视频分析参与量表 (VASE)
  • DOI:
    10.12688/wellcomeopenres.16189.2
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Lai L
  • 通讯作者:
    Daniel Lai L
Consensus classification of posterior cortical atrophy.
  • DOI:
    10.1016/j.jalz.2017.01.014
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Crutch SJ;Schott JM;Rabinovici GD;Murray M;Snowden JS;van der Flier WM;Dickerson BC;Vandenberghe R;Ahmed S;Bak TH;Boeve BF;Butler C;Cappa SF;Ceccaldi M;de Souza LC;Dubois B;Felician O;Galasko D;Graff-Radford J;Graff-Radford NR;Hof PR;Krolak-Salmon P;Lehmann M;Magnin E;Mendez MF;Nestor PJ;Onyike CU;Pelak VS;Pijnenburg Y;Primativo S;Rossor MN;Ryan NS;Scheltens P;Shakespeare TJ;Suárez González A;Tang-Wai DF;Yong KXX;Carrillo M;Fox NC;Alzheimer's Association ISTAART Atypical Alzheimer's Disease and Associated Syndromes Professional Interest Area
  • 通讯作者:
    Alzheimer's Association ISTAART Atypical Alzheimer's Disease and Associated Syndromes Professional Interest Area
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sebastian Crutch其他文献

Update in posterior cortical atrophy
  • DOI:
    10.1016/j.jns.2021.117935
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sebastian Crutch
  • 通讯作者:
    Sebastian Crutch
Correction to: Diagnosis and Management of Posterior Cortical Atrophy
  • DOI:
    10.1007/s11940-023-00751-w
  • 发表时间:
    2023-03-21
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Keir X. X. Yong;Jonathan Graff‑Radford;Samrah Ahmed;Marianne Chapleau;Rik Ossenkoppele;Deepti Putcha;Gil D. Rabinovici;Aida Suarez‑Gonzalez;Jonathan M. Schott;Sebastian Crutch;Emma Harding
  • 通讯作者:
    Emma Harding

Sebastian Crutch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sebastian Crutch', 18)}}的其他基金

The impact of multicomponent support groups for those living with rare dementias
多元支持团体对罕见痴呆症患者的影响
  • 批准号:
    ES/S010467/1
  • 财政年份:
    2019
  • 资助金额:
    $ 182.21万
  • 项目类别:
    Research Grant
Seeing what they see: compensating for cortical visual dysfunction in Alzheimer's disease
看到他们所看到的:补偿阿尔茨海默病的皮质视觉功能障碍
  • 批准号:
    ES/L001810/1
  • 财政年份:
    2014
  • 资助金额:
    $ 182.21万
  • 项目类别:
    Research Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

EEG Based Global Network Models and Platform for Brain States Assessment
基于脑电图的大脑状态评估全球网络模型和平台
  • 批准号:
    DP240102329
  • 财政年份:
    2024
  • 资助金额:
    $ 182.21万
  • 项目类别:
    Discovery Projects
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
  • 批准号:
    10100967
  • 财政年份:
    2024
  • 资助金额:
    $ 182.21万
  • 项目类别:
    EU-Funded
SBIR Phase II: A Software Platform for Assessment of Untrusted Electronics
SBIR 第二阶段:用于评估不可信电子产品的软件平台
  • 批准号:
    2304533
  • 财政年份:
    2023
  • 资助金额:
    $ 182.21万
  • 项目类别:
    Standard Grant
AI-Driven Primary Care Clinical Assessment Platform for Allied Health Professionals (PC-CAP)
面向联合医疗专业人员的人工智能驱动的初级保健临床评估平台 (PC-CAP)
  • 批准号:
    10038273
  • 财政年份:
    2023
  • 资助金额:
    $ 182.21万
  • 项目类别:
    Collaborative R&D
Developing a Digital Training and Assessment Platform to Disseminate a Successful NIH-Supported College Preparation Model for Diversifying the U.S. Biomedical Workforce
开发数字培训和评估平台,以传播 NIH 支持的成功大学预科模式,实现美国生物医学劳动力多元化
  • 批准号:
    10601550
  • 财政年份:
    2023
  • 资助金额:
    $ 182.21万
  • 项目类别:
Construction of the NPEN system, a remote support platform that supports the assessment of visiting nurses
支持上门护士评估的远程支持平台NPEN系统的构建
  • 批准号:
    23K10359
  • 财政年份:
    2023
  • 资助金额:
    $ 182.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A novel method for remote assessment of exercise capacity using a telehealth platform and a wearable medical device
使用远程医疗平台和可穿戴医疗设备远程评估运动能力的新方法
  • 批准号:
    10052835
  • 财政年份:
    2023
  • 资助金额:
    $ 182.21万
  • 项目类别:
    Collaborative R&D
Developing of a Property Retrofit Assessment and Household Engagement Platform
开发房产改造评估和家庭参与平台
  • 批准号:
    10081097
  • 财政年份:
    2023
  • 资助金额:
    $ 182.21万
  • 项目类别:
    Collaborative R&D
SBIR Phase I: An impact analytics platform combining energy system optimization and life cycle assessment
SBIR 第一阶段:结合能源系统优化和生命周期评估的影响分析平台
  • 批准号:
    2230578
  • 财政年份:
    2023
  • 资助金额:
    $ 182.21万
  • 项目类别:
    Standard Grant
A non-invasive, automated platform for hemodynamic assessment of patients at risk of heart failure or pulmonary hypertension
用于对有心力衰竭或肺动脉高压风险的患者进行血流动力学评估的无创自动化平台
  • 批准号:
    10699067
  • 财政年份:
    2023
  • 资助金额:
    $ 182.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了