Stress jump boundary condition capturing for the lattice Boltzmann simulation methods

晶格玻尔兹曼模拟方法的应力跳跃边界条件捕获

基本信息

  • 批准号:
    EP/M006948/1
  • 负责人:
  • 金额:
    $ 10.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Multi-phase flows occur when two or more different phases or types of fluid are brought together. They are seen to occur in a vast range of both physical and industrial type systems. Such systems are, to name but only a few, in processing, production and transportation of foods, oil, gas, waste and slurries; in energy production from evaporators, condensers, pumps and turbines; in natural systems such as geophysical and geochemical flows, reservoir extraction / filtration, biological and biochemical flows. In such systems the point at which different phases meet is termed an interface and this interfacial area gives rise to a host of complex rheological phenomena due to stresses that occur. Phenomena such as suspension dynamics, wetting, jamming, coalescence, break-up, collision and capillarity are all heavily interface dominated flows and are not readily mathematically easy to predict in typical engineering scenarios.In these cases numerical computer simulations have proved an invaluable tool in successfully understanding, diagnosing, predicting and optimising systems. A growing current state of the art class of numerical computer simulation methods used for engineering multi-phase flow is called the lattice Boltzmann method. However, in this promising method, a drawback is the large amounts of resources that are spent smoothing and broadening interfaces in order to resolve and calculate the necessary flow details. This severely restricts the physical representative size of a simulation and the range of industrially useful applications that can benefit from this type of predictive modelling which is often needed to avoid long development delays.This programme of research will develop brand new techniques for the numerical lattice Boltzmann methods in order to apply the mathematically correct stress jump boundary conditions in a sharp exacting manner. This will free up expensive computational resources which means (i) that existing simulations can be modified to take a fraction (estimated at up to 4 times less) of the time and memory, (ii) that a new range of larger more physically representative, accurate and industrially relevant multi-phase flows can be modelled. To ensure the correctness of the newly developed techniques they will be tested against known data and compared against the present day techniques in order to demonstrate the significant enhancements expected to be achieved through this research. The types of research that will use the techniques developed in this research work will predominantly be multi-phase related but it is noted that the techniques developed will apply to any transport phenomena that involves stress boundaries within the lattice Boltzmann methods. For example the junction of an open fluid flowing into a porous media model contains a stress jump. More specifically this research will go on to be applied to the explicit modelling of emulsions and suspension. These are flows that contain a large number of particles with multiply interacting interfaces dominating the emergent complex rheological behaviour. Such flows are prevalent in the foods, drinks, creams, pastes, bio-fluids (blood) and other processing industries and the modelling tools developed here will lead to improved constitutional theories of non-Newtonian fluids, knowledge transfer and process optimisation for many years to come.
当两种或更多种不同的相或类型的流体聚集在一起时,就会发生多相流。它们被认为发生在物理和工业类型系统的广泛范围内。仅举几例,这些系统用于食品、石油、天然气、废物和泥浆的加工、生产和运输;用于蒸发器、冷凝器、泵和涡轮机的能源生产;用于自然系统,如地球物理和地球化学流动、储层提取/过滤、生物和生物化学流动。在这样的系统中,不同相相遇的点被称为界面,并且由于发生的应力,该界面区域引起许多复杂的流变现象。悬浮动力学、润湿、堵塞、聚结、破裂、碰撞和毛细现象等现象都是严重的界面主导流,在典型的工程场景中不容易在数学上预测。在这些情况下,数值计算机模拟已被证明是成功理解、诊断、预测和优化系统的宝贵工具。用于工程多相流的数值计算机模拟方法的发展现状被称为格子玻尔兹曼方法。然而,在这种有前途的方法中,缺点是花费了大量的资源来平滑和加宽界面,以便解析和计算必要的流细节。这严重限制了模拟的物理代表性大小和工业上有用的应用范围,这些应用可以从这种类型的预测建模中受益,而这种预测建模通常需要避免长时间的开发延迟。该研究计划将为数值格子Boltzmann方法开发全新的技术,以便以精确的方式应用数学上正确的应力跳跃边界条件。这将释放昂贵的计算资源,这意味着(i)可以修改现有的模拟以占用时间和内存的一小部分(估计最多少4倍),(ii)可以对更大的物理代表性、准确性和工业相关性的新范围的多相流进行建模。为了确保新开发的技术的正确性,他们将对已知的数据进行测试,并与目前的技术进行比较,以证明通过这项研究有望实现的显着增强。将使用在这项研究工作中开发的技术的研究类型将主要是多相相关的,但值得注意的是,开发的技术将适用于任何涉及晶格玻尔兹曼方法内的应力边界的传输现象。例如,开放流体流入多孔介质模型的交界处包含应力跃变。更具体地说,这项研究将继续适用于显式建模的乳液和悬浮液。这些是包含大量粒子的流动,这些粒子具有多个相互作用的界面,这些界面主导着新兴的复杂流变行为。这种流动在食品,饮料,奶油,糊状物,生物流体(血液)和其他加工行业中很普遍,这里开发的建模工具将在未来许多年内改进非牛顿流体的组成理论,知识转移和过程优化。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analytical expressions for the luminescence of dilute quaternary InAs(N,Sb) semiconductors
  • DOI:
    10.1117/1.jnp.11.026005
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Oriaku, Chijioke I.;Spencer, Timothy J.;Pereira, Mauro F.
  • 通讯作者:
    Pereira, Mauro F.
292Endothelial cell forward migration in a disturbed wall shear stress environment is promoted by ROCK inhibition
292 ROCK 抑制促进内皮细胞在受干扰的壁剪切应力环境中向前迁移
  • DOI:
    10.1093/cvr/cvu087.6
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Hsiao S
  • 通讯作者:
    Hsiao S
Interfacial micro-currents in continuum-scale multi-component lattice Boltzmann equation hydrodynamics
连续尺度多组分晶格玻尔兹曼方程流体动力学中的界面微电流
Endothelial repair in stented arteries is accelerated by inhibition of Rho-associated protein kinase.
  • DOI:
    10.1093/cvr/cvw210
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Hsiao ST;Spencer T;Boldock L;Prosseda SD;Xanthis I;Tovar-Lopez FJ;Van Beusekom HM;Khamis RY;Foin N;Bowden N;Hussain A;Rothman A;Ridger V;Halliday I;Perrault C;Gunn J;Evans PC
  • 通讯作者:
    Evans PC
219 Rock Inhibits Endothelial Migration in Disturbed flow Condition: A Potential Therapeutic Target in PCI
219 岩石在血流扰动条件下抑制内皮细胞迁移:PCI 中的潜在治疗靶点
  • DOI:
    10.1136/heartjnl-2014-306118.219
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Hsiao S
  • 通讯作者:
    Hsiao S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Spencer其他文献

2578 Impact of deep learning on CT-based OARs delineation for flank irradiation: a SIOP-RTSG radiotherapy panel study
深度学习对基于CT的侧腹照射危及器官(OARs)勾画的影响:一项国际小儿肿瘤学会-放射治疗学研究组(SIOP - RTSG)放疗小组研究
  • DOI:
    10.1016/s0167-8140(25)01152-1
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Mianyong Ding;Matteo Maspero;Semi Harrabi;Emmanuel Jouglar;Sabina Vennarini;Timothy Spencer;Britta Weber;Henriette Magelssen;Karen van Beek;Remus Stoica;Simonetta Saldi;Tom Boterberg;Patrick Melchior;Marry M. van den Heuvel-Eibrink;Geert O. Janssens
  • 通讯作者:
    Geert O. Janssens
Maintaining a Highwire act
维持高难度的平衡动作
  • DOI:
    10.1038/nn1011-1226
  • 发表时间:
    2011-09-27
  • 期刊:
  • 影响因子:
    20.000
  • 作者:
    Timothy Spencer
  • 通讯作者:
    Timothy Spencer
Targets of your daily CA(2)ppuccino
你每日咖啡因摄入量(2)的目标
  • DOI:
    10.1038/nn0112-12
  • 发表时间:
    2011-12-23
  • 期刊:
  • 影响因子:
    20.000
  • 作者:
    Timothy Spencer
  • 通讯作者:
    Timothy Spencer

Timothy Spencer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

光滑拟射影复代数簇的 jump loci 与 L^2 类不变量
  • 批准号:
    12001511
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
中国股市异质风险的测度与定价研究
  • 批准号:
    71501088
  • 批准年份:
    2015
  • 资助金额:
    15.5 万元
  • 项目类别:
    青年科学基金项目
Fe-Ga(Al)磁致伸缩“jump”效应能量转换问题
  • 批准号:
    51371028
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
我国股市波动率的跳跃行为研究
  • 批准号:
    70673116
  • 批准年份:
    2006
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 10.46万
  • 项目类别:
    Standard Grant
Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
  • 批准号:
    2343868
  • 财政年份:
    2024
  • 资助金额:
    $ 10.46万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
  • 批准号:
    2316167
  • 财政年份:
    2023
  • 资助金额:
    $ 10.46万
  • 项目类别:
    Fellowship Award
Fixed-Target Platforms for Time-Resolved Crystallography
用于时间分辨晶体学的固定目标平台
  • 批准号:
    10634328
  • 财政年份:
    2023
  • 资助金额:
    $ 10.46万
  • 项目类别:
Exploiting temperature-sensitive orthologs to understand protein allostery
利用温度敏感的直系同源物来了解蛋白质变构
  • 批准号:
    10716051
  • 财政年份:
    2023
  • 资助金额:
    $ 10.46万
  • 项目类别:
Energy-efficient Electric Jump Take-Off
节能电动跳跃起飞
  • 批准号:
    10061816
  • 财政年份:
    2023
  • 资助金额:
    $ 10.46万
  • 项目类别:
    Collaborative R&D
How do kangaroo herpesviruses jump to new host species?
袋鼠疱疹病毒如何转移到新的宿主物种?
  • 批准号:
    DP230102121
  • 财政年份:
    2023
  • 资助金额:
    $ 10.46万
  • 项目类别:
    Discovery Projects
Increasing access to chemistry for high schoolers with blindness: a program to jump start Central Texas
增加失明高中生接触化学的机会:一项启动德克萨斯州中部的计划
  • 批准号:
    10600066
  • 财政年份:
    2022
  • 资助金额:
    $ 10.46万
  • 项目类别:
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2152655
  • 财政年份:
    2022
  • 资助金额:
    $ 10.46万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2152679
  • 财政年份:
    2022
  • 资助金额:
    $ 10.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了