SECURE- network for modelling environmental change
SECURE-环境变化建模网络
基本信息
- 批准号:EP/M008347/1
- 负责人:
- 金额:$ 56.91万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
SECURE is a network of statisticians, modellers and environmental scientists and our aim is to grow a shared vision of how to describe and quantify environmental change to assist in decision making. Understanding and forecasting environmental changes are crucial to the development of strategies to mitigate against the impacts of future events. Communications and decision making around environmental change are sometimes troubled by issues concerning the weight of evidence, the nature and size of uncertainties and how both are described. Evidence for environmental change comes from a number of sources, but key to this proposal is the optimal use of data (from observational, regulatory monitoring and earth observations platforms such as satellites and mobile sensors) and models (process and statistical). A robust and reliable evidence base is key in the decision making process, informed by powerful statistical models and the best data. This proposal will deliver the statistical tools to support decision making. Many environmental challenges related to change require statistical modelling and inferential tools to be developed to understand the drivers and system responses which may be direct or indirect and linked by feedback and lags. The character of environmental data is changing as new technologies (e.g. sensor networks offering high resolution data streams) are developed and become more widely accessible. Emerging sensor technology is able to deliver enhanced dynamic detail of environmental systems at unprecedented scale and . There is also an increasing public engagement with environmental science, through citizen science. Increasing use of citizen science observatories will present new statistical challenges, since the sampling basis of such observations will most likely be preferential and not directed, be of varying quality and collected with different effort. Fusion of the different streams of data will be challenging but essential in terms of informing society and regulators alike about change. Linkage of the different data sources, and the challenges of dealing with big data, in the environmental sphere lie in drawing together diverse, high-throughput data sources, analysing, aggregating and integrating the signals with models and then ultimately using the data-model system to address complex and shifting environmental change issues in support of decision making. Key to success lies in generating digestible outputs which can be disseminated and critiqued across academia, policy-makers and other stakeholders. In climate change, food security, ecosystem resilience, sustainable resource use, hazard warning and disaster management there are new high-volume data sources, including crowd sourced streams, which present problems and untapped opportunities around data management, synthesis, communication and real-time decision-support.Our research will involve: improving modelling and communication tools concerning uncertainty and variability, which are ubiquitous in many environmental data sources; developing and extending modelling capabilities to deal with multi-scale issues, specifically integrating over the different spatial and temporal scales of the data streams, and the derived timescales of model outputs; exploring the power and limitations of recent statistical innovations applied to environmental change issues and finally reflecting on new technologies for visualisation and communication.
SECURE是一个由统计学家、建模师和环境科学家组成的网络,我们的目标是在如何描述和量化环境变化以协助决策方面形成一个共同的愿景。了解和预测环境变化对于制定减轻未来事件影响的战略至关重要。围绕环境变化的沟通和决策有时会受到证据的分量、不确定性的性质和大小以及如何描述这两者的问题的困扰。环境变化的证据有许多来源,但这项建议的关键是数据(来自观测、监管监测和地球观测平台,如卫星和移动传感器)和模型(过程和统计)的最佳利用。强有力的统计模型和最佳数据为决策过程提供了有力和可靠的证据基础。该建议将提供支持决策的统计工具。许多与变化有关的环境挑战需要开发统计建模和推理工具,以了解驱动因素和系统反应,这些反应可能是直接的或间接的,并与反馈和滞后有关。随着新技术(例如提供高分辨率数据流的传感器网络)的发展和更广泛的获取,环境数据的特征正在发生变化。新兴的传感器技术能够以前所未有的规模和规模提供增强的环境系统动态细节。通过公民科学,公众对环境科学的参与也越来越多。越来越多地使用公民科学观测站将带来新的统计挑战,因为这种观测的抽样基础很可能是优先的,而不是定向的,质量不一,收集的努力也不同。融合不同的数据流将具有挑战性,但在向社会和监管机构通报变化方面却至关重要。在环境领域,不同数据源的联系以及处理大数据的挑战在于将不同的、高通量的数据源汇集在一起,分析、汇总和整合信号与模型,然后最终使用数据模型系统来解决复杂和不断变化的环境变化问题,以支持决策。成功的关键在于产生可在学术界、决策者和其他利益攸关方之间传播和批评的易于理解的产出。在气候变化、粮食安全、生态系统复原力、可持续资源利用、灾害预警和灾害管理方面,出现了新的大容量数据源,包括众包流,这在数据管理、综合、通信和实时决策支持方面带来了问题和未开发的机会。我们的研究将涉及:改进关于不确定性和可变性的建模和交流工具,这在许多环境数据源中无处不在;发展和扩展建模能力,以处理多尺度问题,特别是整合数据流的不同空间和时间尺度以及模型输出的派生时间尺度;探索最近应用于环境变化问题的统计创新的力量和局限性,并最终反思可视化和通信的新技术。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distinguishing Trends and Shifts from Memory in Climate Data
- DOI:10.1175/jcli-d-17-0863.1
- 发表时间:2018-12-01
- 期刊:
- 影响因子:4.9
- 作者:Beaulieu, Claudie;Killick, Rebecca
- 通讯作者:Killick, Rebecca
Spatial models with covariates improve estimates of peat depth in blanket peatlands.
- DOI:10.1371/journal.pone.0202691
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:Young DM;Parry LE;Lee D;Ray S
- 通讯作者:Ray S
The genomic and bulked segregant analysis of Curcuma alismatifolia revealed its diverse bract pigmentation.
姜黄的基因组和批量分离分析揭示了其多样化的苞片色素沉着。
- DOI:10.1007/978-3-319-70548-4_81
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Liao X
- 通讯作者:Liao X
Flow-directed PCA for monitoring networks.
- DOI:10.1002/env.2434
- 发表时间:2017-03
- 期刊:
- 影响因子:1.7
- 作者:Gallacher K;Miller C;Scott EM;Willows R;Pope L;Douglass J
- 通讯作者:Douglass J
Extreme temperature events on Greenland in observations and the MAR regional climate model
格陵兰岛极端温度事件的观测和 MAR 区域气候模型
- DOI:10.5194/tc-12-1091-2018
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Leeson A
- 通讯作者:Leeson A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marian Scott其他文献
Sulphur dioxide in Europe: Statistical relationships between emissions and measured concentrations
- DOI:
10.1016/j.atmosenv.2005.12.052 - 发表时间:
2006-05-01 - 期刊:
- 影响因子:
- 作者:
Marco Giannitrapani;Adrian Bowman;Marian Scott;Ron Smith - 通讯作者:
Ron Smith
Opinion of the Scientific Committee on health, environmental and emerging risks on the safety of titanium dioxide in toys.
科学委员会关于玩具中二氧化钛安全性的健康、环境和新风险的意见。
- DOI:
10.1016/j.yrtph.2023.105527 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Theo G Vermeire;Peter Hoet;R. Ion;Renate Krätke;A. Proykova;Marian Scott;Wim H. de Jong - 通讯作者:
Wim H. de Jong
A Report on Phase 1 of the 5th International Radiocarbon Intercomparison (VIRI)
第五届国际放射性碳比对(VIRI)第一阶段报告
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Marian Scott;G. Cook;P. Naysmith;C. Bryant;David O’Donnell - 通讯作者:
David O’Donnell
In: A Cross-Species Approach to Pain and Analgesia, J. W. Ludders, J. Paul-Murphy, S. Robertson, J. Gaynor,
见:疼痛和镇痛的跨物种方法,J. W. Ludders、J. Paul-Murphy、S. Robertson、J. Gaynor,
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Analgesia;J. Ludders;J. Paul;S. Robertson;J. Gaynor;P. Hellyer;P. Wong;C. Barakatt;J. Reid;A. Nolan;Andrea Nolan;Jacky Reid;Marian Scott;Julie W. Fitzpatrick;Stevens - 通讯作者:
Stevens
A Report on Phase 2 of the Fifth International Radiocarbon Intercomparison (VIRI)
第五次国际放射性碳比对(VIRI)第二阶段报告
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Marian Scott;G. Cook;P. Naysmith - 通讯作者:
P. Naysmith
Marian Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marian Scott', 18)}}的其他基金
A digital environment for water resources
水资源数字环境
- 批准号:
NE/T005564/1 - 财政年份:2019
- 资助金额:
$ 56.91万 - 项目类别:
Research Grant
Statistics, environmental management, policy and regulation: developing the evidence base
统计、环境管理、政策和法规:建立证据基础
- 批准号:
NE/G001170/1 - 财政年份:2009
- 资助金额:
$ 56.91万 - 项目类别:
Research Grant
相似国自然基金
铜募集微纳米网片上调LOX活性稳定胶原网络促进盆底修复的研究
- 批准号:82371638
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
GPSM1介导Ca2+循环-II型肌球蛋白网络调控脂肪产热及代谢稳态的机制研究
- 批准号:82370879
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Notch1/β-catenin/Pax6通路调控角膜缘干细胞分化的机制研究
- 批准号:32000537
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
丝氨酸/甘氨酸/一碳代谢网络(SGOC metabolic network)调控炎症性巨噬细胞活化及脓毒症病理发生的机制研究
- 批准号:81930042
- 批准年份:2019
- 资助金额:305 万元
- 项目类别:重点项目
Jab1依赖结合蛋白和去泛素化功能在DNA损伤反应中的双重作用研究
- 批准号:31900558
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
- 批准号:91418205
- 批准年份:2014
- 资助金额:170.0 万元
- 项目类别:重大研究计划
以PXR、CAR为核心的调控网络、作用机制及其指导环磷酰胺个体化用药的临床转化研究
- 批准号:81173131
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
转录因子DNA结合谱绘制新方法及其应用研究
- 批准号:61171030
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
内容分发网络中的P2P分群分发技术研究
- 批准号:61100238
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Modelling Tourist's Value Evaluation in the Social Network Era
社交网络时代游客价值评估建模
- 批准号:
23K11636 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of a multi-organ neural network with independent sensory and motor neurons
具有独立感觉和运动神经元的多器官神经网络的构建
- 批准号:
23K17204 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rethinking walking infrastructure: AI-assisted footpath network modelling
重新思考步行基础设施:人工智能辅助的人行道网络建模
- 批准号:
DP220102382 - 财政年份:2022
- 资助金额:
$ 56.91万 - 项目类别:
Discovery Projects
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
$ 56.91万 - 项目类别:
Studentship
Spatio-temporal modelling, network design, health effects, and dimensional analysis
时空建模、网络设计、健康影响和维度分析
- 批准号:
RGPIN-2022-03576 - 财政年份:2022
- 资助金额:
$ 56.91万 - 项目类别:
Discovery Grants Program - Individual
Neural Network Models for Modelling, Design and Optimization of Structurally Complex Entities in Biomedical Data Science
用于生物医学数据科学中结构复杂实体建模、设计和优化的神经网络模型
- 批准号:
RGPIN-2021-03879 - 财政年份:2022
- 资助金额:
$ 56.91万 - 项目类别:
Discovery Grants Program - Individual
NSERC ResNet: A network for monitoring, modelling, and managing Canada's ecosystem services for sustainability and resilience
NSERC ResNet:用于监测、建模和管理加拿大生态系统服务以实现可持续性和复原力的网络
- 批准号:
523374-2018 - 财政年份:2022
- 资助金额:
$ 56.91万 - 项目类别:
Strategic Network Grants Program
Novel electric-field modelling approach to quantify changes in resting state functional connectivity following theta burst stimulation
新颖的电场建模方法可量化 θ 爆发刺激后静息态功能连接的变化
- 批准号:
10686090 - 财政年份:2022
- 资助金额:
$ 56.91万 - 项目类别:
Network Modelling and Analysis with Applications to Operations Management
网络建模和分析及其在运营管理中的应用
- 批准号:
RGPIN-2018-03810 - 财政年份:2022
- 资助金额:
$ 56.91万 - 项目类别:
Discovery Grants Program - Individual
Novel methods for network-structured time series modelling
网络结构时间序列建模的新方法
- 批准号:
2751518 - 财政年份:2022
- 资助金额:
$ 56.91万 - 项目类别:
Studentship