Cardiff University-Equipment Account

卡迪夫大学-设备账户

基本信息

  • 批准号:
    EP/M00855X/1
  • 负责人:
  • 金额:
    $ 477.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    未结题

项目摘要

MRI scanners are used widely to diagnose disease and to understand the workings of the healthy body. However, while useful for some diagnoses, they do not capture tissue properties at microscopic length scales (thousandths of a millimetre) where important processes occur, e.g. in the 'axons' connecting different brain areas, or in cells in vital organs, e.g. liver. Such detailed examination usually requires an invasive 'biopsy' which is studied under a microscope. However, biopsies only provide information about small regions of an organ, are destructive and so cannot be performed repeatedly for monitoring, and can be risky to collect, e.g. in the brain.This project assembles engineers, physicists, mathematicians and computer scientists to develop new MRI methods for quantifying tissue structure at the microscopic scale. The principal approach looks at how fine tissue structure impedes the movement of water. Current MRI hardware restricts measurement to relatively large molecular displacements and from tissue components with a relatively strong and long-lived signal. This blurs our picture and prohibits us from quantifying important characteristics, such as individual cell dimensions, or packing of nerve fibres.The sensitivity of MRI to smaller molecular movements and weaker signals is mainly limited by the available magnetic field gradients (controlled alterations in the field strength within the scanner). We have persuaded MRI manufacturers to build a bespoke MRI system with ultra-strong gradients (7 times stronger than available on standard MRI scanners) to be situated in the new Cardiff University Brain Research Imaging Centre. One similar system currently exists (in Boston, USA) but is used predominantly to make qualitative pictures of the brain's wiring pattern. Our team has the unique combination of expertise to develop and exploit this hardware in completely new directions. By designing new physics methods to 'tune' the scanner to important (otherwise invisible) signals, developing new biophysical models to explain these signals, and suppressing unwanted signals, we will be able to quantify important tissue properties for the first time. Making such a system usable poses several key engineering challenges, such as modelling of electromagnetic fields, to deal with confounds that become significant with stronger gradients, and modelling of the effects on nerves/cardiac tissue, to impose safety constraints. However, the current work of the consortium of applicants provides strong starting points for overcoming these challenges. Established methods for accelerating MR data acquisition will be compromised with stronger gradients, requiring development of new physics methods for fast data collection. Once achieved, faster acquisition and access to newly-visible signal components will enable us to develop new mathematical models of microstructure incorporating finer length-scales to increase understanding of tissue structure in health and disease, and to make testable predictions on important biophysical parameters such as nerve conduction velocities in the brain. This will result in earlier and more accurate diagnoses, more specific and better-targeted therapy, improved treatment monitoring, and overall improved patient outcome. The ultimate goal is to develop the imaging software that brings this hardware to mass availability, in turn enabling a new generation of mainstream microstructure imaging and macrostructural connectivity mapping techniques to translate to frontline practice.
MRI 扫描仪广泛用于诊断疾病和了解健康身体的运作情况。然而,虽然对某些诊断有用,但它们无法捕获发生重要过程的微观长度尺度(千分之一毫米)的组织特性,例如,在连接不同大脑区域的“轴突”中,或在重要器官的细胞中,例如肝。这种详细的检查通常需要在显微镜下进行侵入性“活检”。然而,活检仅提供有关器官小区域的信息,具有破坏性,因此不能重复进行监测,并且收集可能存在风险。该项目汇集了工程师、物理学家、数学家和计算机科学家,开发新的 MRI 方法,用于在微观尺度上量化组织结构。主要方法着眼于精细组织结构如何阻碍水的运动。目前的 MRI 硬件将测量限制在相对较大的分子位移以及具有相对强且寿命长的信号的组织成分。这模糊了我们的图像,并阻止我们量化重要特征,例如单个细胞尺寸或神经纤维堆积。 MRI 对较小分子运动和较弱信号的敏感性主要受到可用磁场梯度(扫描仪内场强的受控变化)的限制。我们已经说服 MRI 制造商在新的卡迪夫大学大脑研究成像中心建造一个具有超强梯度(比标准 MRI 扫描仪强 7 倍)的定制 MRI 系统。目前存在一种类似的系统(位于美国波士顿),但主要用于制作大脑接线模式的定性图像。我们的团队拥有独特的专业知识组合,可以在全新的方向上开发和利用该硬件。通过设计新的物理方法来“调整”扫描仪以适应重要(否则不可见)的信号,开发新的生物物理模型来解释这些信号,并抑制不需要的信号,我们将能够首次量化重要的组织特性。使这样的系统可用会带来几个关键的工程挑战,例如电磁场建模,以处理随着更强的梯度而变得显着的混杂因素,以及对神经/心脏组织的影响进行建模,以施加安全约束。然而,申请人联盟目前的工作为克服这些挑战提供了强有力的起点。加速 MR 数据采集的既定方法将受到更强梯度的影响,需要开发新的物理方法来快速采集数据。一旦实现,更快地采集和访问新可见的信号分量将使我们能够开发新的包含更精细长度尺度的微观结构数学模型,以增进对健康和疾病组织结构的理解,并对重要的生物物理参数(例如大脑中的神经传导速度)做出可测试的预测。这将带来更早、更准确的诊断、更具体、更有针对性的治疗、改进的治疗监测以及整体改善的患者治疗结果。最终目标是开发成像软件,使该硬件能够大规模使用,从而使新一代主流微观结构成像和宏观结构连接映射技术能够转化为一线实践。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI.
  • DOI:
    10.1016/j.neuroimage.2021.118183
  • 发表时间:
    2021-08-15
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Afzali M;Nilsson M;Palombo M;Jones DK
  • 通讯作者:
    Jones DK
Micro-structure diffusion scalar measures from reduced MRI acquisitions
  • DOI:
    10.1371/journal.pone.0229526
  • 发表时间:
    2020-03-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Aja-Fernandez, Santiago;De Luis-Garcia, Rodrigo;Tristan-Vega, Antonio
  • 通讯作者:
    Tristan-Vega, Antonio
MR Fingerprinting with b-Tensor Encoding for Simultaneous Quantification of Relaxation and Diffusion in a Single Scan.
  • DOI:
    10.1002/mrm.29352
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Afzali, Maryam;Mueller, Lars;Sakaie, Ken;Hu, Siyuan;Chen, Yong;Szczepankiewicz, Filip;Griswold, Mark A.;Jones, Derek K.;Ma, Dan
  • 通讯作者:
    Ma, Dan
Apparent propagator anisotropy from single-shell diffusion MRI acquisitions.
  • DOI:
    10.1002/mrm.28620
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Aja-Fernández S;Tristán-Vega A;Jones DK
  • 通讯作者:
    Jones DK
Computing the orientational-average of diffusion-weighted MRI signals: a comparison of different techniques.
  • DOI:
    10.1038/s41598-021-93558-1
  • 发表时间:
    2021-07-12
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Afzali M;Knutsson H;Özarslan E;Jones DK
  • 通讯作者:
    Jones DK
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kim Graham其他文献

Kim Graham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kim Graham', 18)}}的其他基金

MRC IAA 2021 Cardiff University
MRC IAA 2021 卡迪夫大学
  • 批准号:
    MR/X502960/1
  • 财政年份:
    2022
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
STFC IAA Cardiff
STFC IAA 卡迪夫
  • 批准号:
    ST/X508159/1
  • 财政年份:
    2022
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
Impact Acceleration Account
影响力加速账户
  • 批准号:
    AH/X003566/1
  • 财政年份:
    2022
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
BBSRC IAA Cardiff University
BBSRC IAA 卡迪夫大学
  • 批准号:
    BB/X511043/1
  • 财政年份:
    2022
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
Strategic investment in Cardiff University's functional material capabilities
对卡迪夫大学功能材料能力的战略投资
  • 批准号:
    EP/V033832/1
  • 财政年份:
    2020
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
Cardiff University - EPSRC Capital Award for Core Equipment
卡迪夫大学 - EPSRC 核心设备资本奖
  • 批准号:
    EP/T024372/1
  • 财政年份:
    2019
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
Developing low-cost cognitive tools for dementia assessment in low-to-middle income countries (LMICs)
开发用于中低收入国家(LMIC)痴呆症评估的低成本认知工具
  • 批准号:
    MR/P024696/1
  • 财政年份:
    2017
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
Characterising brain network differences during scene perception and memory in young adult APOE-e4 carriers: multi-modal imaging in ALSPAC
描述年轻成人 APOE-e4 携带者场景感知和记忆过程中大脑网络差异的特征:ALSPAC 中的多模态成像
  • 批准号:
    MR/N01233X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
Testing for material-specific effects in long-term memory: evidence from amnesia and functional neuroimaging.
测试长期记忆中材料特异性的影响:来自健忘症和功能神经影像的证据。
  • 批准号:
    G1002149/1
  • 财政年份:
    2012
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
Differen0ating the contributions of domain-specific regions within the medial temporal lobe and extrastriate cortex to perception
区分内侧颞叶和纹外皮层内特定区域对感知的贡献
  • 批准号:
    BB/I007091/1
  • 财政年份:
    2012
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant

相似海外基金

University of Leeds Core Equipment Award 2022
2022 年利兹大学核心设备奖
  • 批准号:
    EP/X034801/1
  • 财政年份:
    2023
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
University of Bristol Core Equipment Award 2022
2022 年布里斯托大学核心设备奖
  • 批准号:
    EP/X034828/1
  • 财政年份:
    2023
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
MRI: Track 3 Acquisition of Helium Recovery Equipment at West Virginia University
MRI:第 3 轨道采购西弗吉尼亚大学氦回收设备
  • 批准号:
    2320495
  • 财政年份:
    2023
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track #1 Acquisition of a Differential Scanning Calorimeter to Support Modern Materials Research and Teaching at Western Washington University
设备: MRI:轨道
  • 批准号:
    2320809
  • 财政年份:
    2023
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Standard Grant
Equipment: CC Campus Compute: Expansion of GPU Compute Capacity for NC State University HPC to Support Research and Education
设备:CC Campus Compute:扩展北卡罗来纳州立大学 HPC 的 GPU 计算能力以支持研究和教育
  • 批准号:
    2321565
  • 财政年份:
    2023
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Standard Grant
Equipment: University of Hawaii R/V Kilo Moana Oceanographic Instrumentation
设备:夏威夷大学 R/V Kilo Moana 海洋学仪器
  • 批准号:
    2315291
  • 财政年份:
    2023
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a Fluorescence-Activated Cell Sorter (FACS) to Enhance Research Capabilities at Western Kentucky University
设备: MRI:第一轨采购荧光激活细胞分选仪 (FACS),以增强西肯塔基大学的研究能力
  • 批准号:
    2320767
  • 财政年份:
    2023
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Standard Grant
EPSRC Core Equipment Award 2022: University of Warwick
2022 年 EPSRC 核心设备奖:华威大学
  • 批准号:
    EP/X034836/1
  • 财政年份:
    2023
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
EPSRC Core Equipment Call 2022 - Cranfield University
EPSRC 核心设备电话会议 2022 - 克兰菲尔德大学
  • 批准号:
    EP/X034976/1
  • 财政年份:
    2023
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
EPSRC Core Equipment Award 2022 for Aston University
阿斯顿大学 2022 年 EPSRC 核心设备奖
  • 批准号:
    EP/X035042/1
  • 财政年份:
    2023
  • 资助金额:
    $ 477.49万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了