Enabling next generation lithium batteries
实现下一代锂电池
基本信息
- 批准号:EP/M009521/1
- 负责人:
- 金额:$ 867.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Energy storage is a great research challenge of our time: the rechargeable Li-ion battery (LiB) has transformed portable electronics; it is the technology of choice for electric and hybrid electric vehicles, and it has a key role to play in grid scale storage applications where it can facilitate more effective and greater use of renewable energy. However, today's consumer electronic Li-ion batteries cannot simply be scaled-up for electric vehicles or grid storage, and new generations of lithium-ion batteries are required that deliver enhanced combinations and improved balances of: cost (<£100/kWh), energy density (>300 Wh/kg), power density (> 2000 W/kg), safety (especially fire resistance), calendar life (> 10 yrs) and lifetime (> 3000 cycles). In the past, efforts to address these challenges have often been based on individual researchers or groups focused on science OR engineering. Our vision is that success requires basic research to tackle these hurdles, but one that employs an integrated programme across a range of science and engineering uniting materials chemists, materials modelling across lengths from the nano-scale to the device-scale, manufacturing engineers, skills in in-situ characterization techniques, in communication with supply chain companies and end-users. Our research spans step-changes in LiBs as well as more radical ideas and technologies beyond LiBs, such as the lithium-air battery. We will- Identify new classes of anode materials to overcome the disadvantages of poor safety and low power inherent to the graphitic anodes currently used in almost all commercial LIBs. - Develop 3D polymer/ceramic interpenetrating networks as protective membranes for lithium metal electrodes, transforming the energy density of the anode.- Develop novel polymer electrolytes and methods to process them, leading to the viable (and much safer) solid-state alternatives to flammable liquid electrolytes in lithium batteries.- Identify and reduce sources of resistance in solid electrolyte-electrode interfaces - Enable the use of higher voltage cathode materials via the use of solid-state electrolytes and coatings.- Address the major hurdles facing the realisation of the game changing lithium-air battery by investigating new redox mediating molecules to reduce charging voltages and electrocatalysts to increase discharge voltages.- Use innovative manufacturing methods to produce 3D and structured composite electrodes to achieve increased energy density, and higher rate performances and lifetime.- Integrate the new materials and electrode structures into lab scale battery devices thus demonstrating the potential of our advances- Engage with all stakeholders in lithium batteries in the UK and abroad - be an advocate for Li batteries, disseminate results.-Train a new cohort of people with experience of working in a team spanning a wide range of science and engineering skills
能量存储是我们这个时代的一个巨大的研究挑战:可充电锂离子电池(LiB)已经改变了便携式电子产品;它是电动和混合动力汽车的首选技术,并且在电网规模存储应用中发挥着关键作用,可以促进更有效和更多地利用可再生能源。然而,当今的消费电子锂离子电池不能简单地扩大规模用于电动汽车或电网存储,需要新一代锂离子电池提供增强的组合和改进的平衡:成本(<100英镑/kWh)、能量密度(>300Wh/kg)、功率密度(>2000W/kg)、安全性(特别是耐火性)、日历寿命(>10年)和寿命(>3000) 周期)。过去,解决这些挑战的努力通常是基于专注于科学或工程的个人研究人员或团体。我们的愿景是,成功需要基础研究来解决这些障碍,但要采用跨一系列科学和工程的综合计划,将材料化学家、从纳米级到设备级的材料建模、制造工程师、原位表征技术技能以及与供应链公司和最终用户的沟通联系起来。我们的研究涵盖锂离子电池的阶跃变化以及锂离子电池之外更激进的想法和技术,例如锂空气电池。我们将- 确定新型阳极材料,以克服目前几乎所有商业锂离子电池中使用的石墨阳极固有的安全性差和功率低的缺点。 - 开发 3D 聚合物/陶瓷互穿网络作为锂金属电极的保护膜,改变阳极的能量密度。- 开发新型聚合物电解质及其加工方法,为锂电池中的易燃液体电解质提供可行(且更安全)的固态替代品。- 识别并减少固体电解质-电极界面中的电阻源 - 通过使用固态电解质和涂层,能够使用更高电压的正极材料。- 通过研究新的氧化还原介导分子来降低充电电压和电催化剂来提高放电电压,解决实现改变游戏规则的锂空气电池所面临的主要障碍。- 使用创新的制造方法来生产 3D 和结构化复合电极,以实现更高的能量密度、更高的倍率性能和 - 将新材料和电极结构集成到实验室规模的电池设备中,从而展示我们进步的潜力 - 与英国和国外锂电池的所有利益相关者接触 - 成为锂电池的倡导者,传播成果。 - 培训一批具有在涵盖广泛的科学和工程技能的团队中工作经验的新人才
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanochemical synthesis and ion transport properties of Na3OX (X = Cl, Br, I and BH4) antiperovskite solid electrolytes
- DOI:10.1016/j.jpowsour.2020.228489
- 发表时间:2020-09-30
- 期刊:
- 影响因子:9.2
- 作者:Ahiavi, Ernest;Dawson, James A.;Famprikis, Theodosios
- 通讯作者:Famprikis, Theodosios
Chain-length, flexibility and the glass transition of polymers
聚合物的链长、柔韧性和玻璃化转变
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Baker, D.L.
- 通讯作者:Baker, D.L.
Transition Metal Migration Can Facilitate Ionic Diffusion in Defect Garnet-Based Intercalation Electrodes
- DOI:10.1021/acsenergylett.0c00376
- 发表时间:2020-04
- 期刊:
- 影响因子:22
- 作者:Nicholas H. Bashian;S. Abdel-Latif;M. Zuba;Kent J. Griffith;A. Ganose;Joseph W. Stiles;Shiliang Zhou;D. Scanlon;L. Piper;B. Melot
- 通讯作者:Nicholas H. Bashian;S. Abdel-Latif;M. Zuba;Kent J. Griffith;A. Ganose;Joseph W. Stiles;Shiliang Zhou;D. Scanlon;L. Piper;B. Melot
Cooperative Intramolecular Dynamics Control the Chain-Length-Dependent Glass Transition in Polymers
- DOI:10.1103/physrevx.12.021047
- 发表时间:2022-05-27
- 期刊:
- 影响因子:12.5
- 作者:Baker, Daniel L.;Reynolds, Matthew;Mattsson, Johan
- 通讯作者:Mattsson, Johan
A novel approach for the quantification of inhomogeneous 3D current distribution in fuel cell electrodes
- DOI:10.1016/j.jpowsour.2018.06.029
- 发表时间:2018-08-31
- 期刊:
- 影响因子:9.2
- 作者:Bertei, A.;Yufit, V.;Brandon, N. P.
- 通讯作者:Brandon, N. P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
P Bruce其他文献
1749 AMINOPHYLLINE BUT NOT ENPROFYLLINE REVERSES NEONATAL VENTILATORY DEPRESSION CAUSED BY HYPOXIA AND L-N6-PHENYLISO-PROPYLADENOSINE (PIA)
1749 氨茶碱而非恩丙茶碱可逆转由缺氧和 L-N6-苯基异丙基腺苷(PIA)引起的新生儿通气抑制
- DOI:
10.1203/00006450-198504000-01767 - 发表时间:
1985-04-01 - 期刊:
- 影响因子:3.100
- 作者:
R Darnall;P Bruce;L Belardinelli - 通讯作者:
L Belardinelli
P Bruce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('P Bruce', 18)}}的其他基金
Protected Anodes for Lithium Sulphur Batteries (PALIS)
锂硫电池保护阳极 (PALIS)
- 批准号:
EP/P510282/1 - 财政年份:2016
- 资助金额:
$ 867.06万 - 项目类别:
Research Grant
Platform Grant Renewal - Materials for Lithium Batteries
平台资助续展 - 锂电池材料
- 批准号:
EP/I029273/2 - 财政年份:2014
- 资助金额:
$ 867.06万 - 项目类别:
Research Grant
Crossing Boundaries in Energy Storage
跨越储能领域的界限
- 批准号:
EP/I022570/2 - 财政年份:2014
- 资助金额:
$ 867.06万 - 项目类别:
Research Grant
SUPERGEN Energy Storage Hub
SUPERGEN 储能中心
- 批准号:
EP/L019469/1 - 财政年份:2014
- 资助金额:
$ 867.06万 - 项目类别:
Research Grant
Crossing Boundaries in Energy Storage
跨越储能领域的界限
- 批准号:
EP/I022570/1 - 财政年份:2011
- 资助金额:
$ 867.06万 - 项目类别:
Research Grant
Platform Grant Renewal - Materials for Lithium Batteries
平台资助续展 - 锂电池材料
- 批准号:
EP/I029273/1 - 财政年份:2011
- 资助金额:
$ 867.06万 - 项目类别:
Research Grant
An O2 Electrode for a Rechargeable Lithium Battery
可充电锂电池的 O2 电极
- 批准号:
EP/E03649X/1 - 财政年份:2007
- 资助金额:
$ 867.06万 - 项目类别:
Research Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
GitLife 2.0: Utilising next generation digital technologies to deliver twenty-fold improvement to a unique version control system, enabling SynBio innovations in net zero and healthcare.
GitLife 2.0:利用下一代数字技术为独特的版本控制系统提供二十倍的改进,从而实现 SynBio 在净零排放和医疗保健领域的创新。
- 批准号:
10077100 - 财政年份:2023
- 资助金额:
$ 867.06万 - 项目类别:
Investment Accelerator
A Modality-Agnostic Potency Assay Enabling Both Ex Vivo and In Vivo Genome Editing Therapeutics for Sickle Cell Disease
一种与模态无关的效力测定,可实现镰状细胞病的体外和体内基因组编辑治疗
- 批准号:
10668694 - 财政年份:2023
- 资助金额:
$ 867.06万 - 项目类别:
Development of Next-Generation Filtering Enabling High-Speed Processing and Flexible Policy Description
开发下一代过滤,实现高速处理和灵活的策略描述
- 批准号:
23K11104 - 财政年份:2023
- 资助金额:
$ 867.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Next generation additive manufacturing solution enabling local, sustainable and low cost production of energy efficient ceramic filtration membranes
下一代增材制造解决方案可实现本地、可持续和低成本生产节能陶瓷过滤膜
- 批准号:
10056737 - 财政年份:2023
- 资助金额:
$ 867.06万 - 项目类别:
Launchpad
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
- 批准号:
10710974 - 财政年份:2023
- 资助金额:
$ 867.06万 - 项目类别:
Extraordinary Dispersion Engineering In Enabling Ultrafast Swept Source visiblelight Optical Coherence Tomography
非凡的色散工程实现超快扫频源可见光光学相干断层扫描
- 批准号:
10698705 - 财政年份:2023
- 资助金额:
$ 867.06万 - 项目类别:
ENABLING SUBMILLISECOND-TIMESCALE TWO-PHOTON RECORDING OF VOLTAGE DYNAMICS IN THREE DIMENSIONS IN VIVO
实现体内三维电压动态的亚毫秒级双光子记录
- 批准号:
10739579 - 财政年份:2023
- 资助金额:
$ 867.06万 - 项目类别:
The development of a novel inkjet bioprinter and software operating system, enabling high precision next generation 3D bioprinting.
开发新型喷墨生物打印机和软件操作系统,实现高精度的下一代 3D 生物打印。
- 批准号:
10035475 - 财政年份:2022
- 资助金额:
$ 867.06万 - 项目类别:
Collaborative R&D
PixelCam and HoloCam: Automated Quality Control for High Volume Holographic Optical Element Manufacture. Enabling the Next Generation of Automotive Head-up Displays.
PixelCam 和 HoloCam:大批量全息光学元件制造的自动化质量控制。
- 批准号:
10029924 - 财政年份:2022
- 资助金额:
$ 867.06万 - 项目类别:
Collaborative R&D
Next-Generation Enabling Technologies Towards Precision and Personalized Medicine
实现精准和个性化医疗的下一代支持技术
- 批准号:
RGPIN-2020-04434 - 财政年份:2022
- 资助金额:
$ 867.06万 - 项目类别:
Discovery Grants Program - Individual