Personalised Model Based Optimal Lead Guidance in Cardiac Resynchronisation Therapy
基于个性化模型的心脏再同步治疗中的最佳导联指导
基本信息
- 批准号:EP/M012492/1
- 负责人:
- 金额:$ 102.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With each heart beat a wave of electrical activation sweeps across the heart stimulating the muscles to contract. In the healthy heart the wave is initiated from many locations across the wall and rapidly activates the whole heart leading to a synchronous, efficient and effective pumping of blood around the body.In patients suffering dyssynchronous heart failure the activation wave starts on the right hand side of the heart and slowly progresses to the left hand side of the heart. This asynchronous activation pattern causes an asynchronous, inefficient and ineffective pumping of blood. To treat these patients a pacing device is implanted with leads attached to the left and right hand side of the heart. By activating the left and right side of the heart from these two leads the patient's activation pattern can be resynchronised leading to a synchronous and effective contraction. This treatment is referred to as cardiac resynchronisation therapy or CRT.CRT is an effective treatment in most patients but 30-50% of patients fail to improve or respond to treatment. Due to the invasive nature and cost of the procedure it is undesirable to treat patients who will not respond. Identifying the patients who cannot respond is currently obfuscated by the inability to guarantee optimal treatment in all cases. Hence it is not possible to differentiate from patients that did not respond as they did not receive the optimal treatment from those that were unable to benefit from CRT under any conditions. At present guidelines suggest a "one size fits all" approach to the location of the leads on the patient's heart despite significant evidence that the location of the leads plays a critical role in determining outcome. This indicates that some patients may respond to CRT but only if they receive optimal lead placement.The aim of this project is to determine the best location to place the pacing lead on the left side of the heart in each individual patient receiving CRT, based on the physiology and pathology of the specific patient's heart. To achieve this aim we propose to use advanced high fidelity and resolution imaging techniques to characterise the shape of the patient's heart, the potential pacing locations, and the location of any dead non-conducting tissue in the heart. We will combine this anatomical information with measurements of electrical activation time to create a biophysical model of the electrical properties of the individual patient's heart. Using the model we will be able to simulate the activation patterns in the patient's heart for each potential pacing location. In a training data set we will compare the activation patterns at each pacing location with measured pump function, in response to pacing, to identify the activation pattern that best predicts the optimal pacing location.A prospective clinical study will then be performed where patient specific models will be created for each patient prior to procedure and the optimal pacing site identified. The predictive capacity of the model will then be evaluated when the device is implanted by testing if the model has correctly predicted the optimal pacing location. The project represents a significant advance for patient specific models - moving from a technique for analysing patient data to a tool for guiding patient treatment. Improving outcomes for CRT patients will reduce morbidity and hospitalisation rates, decrease the financial burden of non-responding patients on the NHS and improve our ability to identify what characteristics determine if a patient will respond to treatment.
每次心脏跳动时,一股电激活波扫过心脏,刺激肌肉收缩。在健康的心脏中,这种波是从跨壁的许多位置发起的,并迅速激活整个心脏,导致血液在全身同步,高效和有效地泵送。在患有非同步心力衰竭的患者中,激活波从心脏的右侧开始,慢慢地发展到心脏的左侧。这种异步激活模式导致异步、低效和无效的血液泵送。为了治疗这些病人,一个起搏装置被植入了连接在心脏左右两侧的导线。通过这两条导联激活左、右心脏,患者的激活模式可以重新同步,导致同步有效的收缩。这种治疗被称为心脏再同步治疗或CRT。CRT对大多数患者是一种有效的治疗方法,但30-50%的患者对治疗没有改善或反应。由于手术的侵入性和费用,不希望治疗没有反应的患者。目前,由于无法保证在所有病例中都能获得最佳治疗,因此无法确定哪些患者没有反应。因此,不可能区分那些没有反应的患者(因为他们没有接受最佳治疗)和那些在任何情况下都无法从CRT中受益的患者。目前的指南建议采用“一刀切”的方法来确定导联在患者心脏上的位置,尽管有大量证据表明导联的位置在决定结果方面起着关键作用。这表明一些患者可能对CRT有反应,但前提是他们接受了最佳的导线放置。该项目的目的是根据具体患者心脏的生理和病理情况,确定每个接受CRT的患者心脏左侧起搏导联的最佳位置。为了实现这一目标,我们建议使用先进的高保真度和分辨率成像技术来表征患者心脏的形状,潜在的起搏位置,以及心脏中任何死亡的非导电组织的位置。我们将把这些解剖信息与电激活时间的测量相结合,以创建个体患者心脏电特性的生物物理模型。使用该模型,我们将能够模拟患者心脏中每个潜在起搏位置的激活模式。在训练数据集中,我们将每个起搏位置的激活模式与测量的泵功能进行比较,以响应起搏,以确定最能预测最佳起搏位置的激活模式。然后进行一项前瞻性临床研究,在手术前为每位患者创建特定的模型并确定最佳起搏位置。当设备植入时,通过测试模型是否正确预测了最佳起搏位置来评估模型的预测能力。该项目代表了针对特定患者模型的重大进步——从分析患者数据的技术转变为指导患者治疗的工具。改善CRT患者的治疗结果将降低发病率和住院率,减少对NHS无反应患者的经济负担,并提高我们识别哪些特征决定患者是否对治疗有反应的能力。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comprehensive use of cardiac computed tomography to guide left ventricular lead placement in cardiac resynchronization therapy.
心脏计算机断层扫描的综合使用在心脏重新同步疗法中指导左心室铅放置。
- DOI:10.1016/j.hrthm.2017.04.041
- 发表时间:2017-09
- 期刊:
- 影响因子:5.5
- 作者:Behar JM;Rajani R;Pourmorteza A;Preston R;Razeghi O;Niederer S;Adhya S;Claridge S;Jackson T;Sieniewicz B;Gould J;Carr-White G;Razavi R;McVeigh E;Rinaldi CA
- 通讯作者:Rinaldi CA
Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation.
- DOI:10.1016/j.jcp.2015.10.045
- 发表时间:2016-01-15
- 期刊:
- 影响因子:4.1
- 作者:Augustin CM;Neic A;Liebmann M;Prassl AJ;Niederer SA;Haase G;Plank G
- 通讯作者:Plank G
Functional Imaging and Modeling of the Heart - 11th International Conference, FIMH 2021, Stanford, CA, USA, June 21-25, 2021, Proceedings
心脏功能成像和建模 - 第 11 届国际会议,FIMH 2021,美国加利福尼亚州斯坦福,2021 年 6 月 21-25 日,会议记录
- DOI:10.1007/978-3-030-78710-3_60
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Beach M
- 通讯作者:Beach M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Niederer其他文献
Developing cardiac digital twin populations powered by machine learning provides electrophysiological insights in conduction and repolarization
开发由机器学习驱动的心脏数字双胞胎群体,提供了在传导和复极化方面的电生理见解
- DOI:
10.1038/s44161-025-00650-0 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:10.800
- 作者:
Shuang Qian;Devran Ugurlu;Elliot Fairweather;Laura Dal Toso;Yu Deng;Marina Strocchi;Ludovica Cicci;Richard E. Jones;Hassan Zaidi;Sanjay Prasad;Brian P. Halliday;Daniel Hammersley;Xingchi Liu;Gernot Plank;Edward Vigmond;Reza Razavi;Alistair Young;Pablo Lamata;Martin Bishop;Steven Niederer - 通讯作者:
Steven Niederer
PO-05-163 TOWARDS AUTOMATED GENERATION OF ABLATION LESION MASKS: A UNISON OF ELECTRO AND OPTIC FLOW MAPPING
PO-05-163 迈向消融病变掩模的自动化生成:电与光流映射的统一
- DOI:
10.1016/j.hrthm.2024.03.1434 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Ovais Ahmed Jaffery;Carlos E. Barrera;Cristobal Rodero;Alexander Zolotarev;Wilson W. Good;Gregory Slabaugh;Steven Niederer;Edward J. Vigmond;Caroline H. Roney - 通讯作者:
Caroline H. Roney
Leadless left ventricular endocardial pacing for cardiac resynchronization therapy: A systematic review and meta-analysis
- DOI:
10.1016/j.hrthm.2022.02.018 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:5.700
- 作者:
Nadeev Wijesuriya;Mark K. Elliott;Vishal Mehta;Baldeep S. Sidhu;Jonathan M. Behar;Steven Niederer;Christopher A. Rinaldi - 通讯作者:
Christopher A. Rinaldi
Energetic consequences of mechanical loads.
机械负载的能量后果。
- DOI:
10.1016/j.pbiomolbio.2008.02.015 - 发表时间:
2008 - 期刊:
- 影响因子:3.8
- 作者:
D. Loiselle;Edmund J. Crampin;Steven Niederer;Nicolas P. Smith;Christopher John Barclay - 通讯作者:
Christopher John Barclay
Solution to the Unknown Boundary Tractions in Myocardial Material Parameter Estimations
心肌材料参数估计中未知边界牵引的解决方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Anastasia Nasopoulou;D. Nordsletten;Steven Niederer;P. Lamata - 通讯作者:
P. Lamata
Steven Niederer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Niederer', 18)}}的其他基金
Scaling Cardiac Biomechanics Digital Twins for Personalised Medicine
扩展心脏生物力学数字孪生以实现个性化医疗
- 批准号:
EP/X012603/1 - 财政年份:2023
- 资助金额:
$ 102.02万 - 项目类别:
Research Grant
Scaling Cardiac Biomechanics Digital Twins for Personalised Medicine
扩展心脏生物力学数字孪生以实现个性化医疗
- 批准号:
EP/X012603/2 - 财政年份:2023
- 资助金额:
$ 102.02万 - 项目类别:
Research Grant
In-Procedure Personalized Atrial Digital Twin to Predict Outcome of Atrial Fibrillation Ablation
术中个性化心房数字双胞胎可预测心房颤动消融的结果
- 批准号:
EP/W000091/2 - 财政年份:2023
- 资助金额:
$ 102.02万 - 项目类别:
Research Grant
In-Procedure Personalized Atrial Digital Twin to Predict Outcome of Atrial Fibrillation Ablation
术中个性化心房数字双胞胎可预测心房颤动消融的结果
- 批准号:
EP/W000091/1 - 财政年份:2022
- 资助金额:
$ 102.02万 - 项目类别:
Research Grant
Uncertainty Quantification in Prospective and Predictive Patient Specific Cardiac Models
前瞻性和预测性患者特定心脏模型中的不确定性量化
- 批准号:
EP/P01268X/1 - 财政年份:2017
- 资助金额:
$ 102.02万 - 项目类别:
Research Grant
Modelling Cardiac Energy Supply during Heart Failure
心力衰竭期间心脏能量供应建模
- 批准号:
EP/F043929/2 - 财政年份:2010
- 资助金额:
$ 102.02万 - 项目类别:
Fellowship
Modelling Cardiac Energy Supply during Heart Failure
心力衰竭期间心脏能量供应建模
- 批准号:
EP/F043929/1 - 财政年份:2009
- 资助金额:
$ 102.02万 - 项目类别:
Fellowship
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Liutex-based Sub-Grid Model for Large Eddy Simulation of Turbulent Flow
EAGER:基于 Liutex 的湍流大涡模拟子网格模型
- 批准号:
2422573 - 财政年份:2024
- 资助金额:
$ 102.02万 - 项目类别:
Standard Grant
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
- 批准号:
24K20794 - 财政年份:2024
- 资助金额:
$ 102.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: CPS: FAICYS: Model-Based Verification for AI-Enabled Cyber-Physical Systems Through Guided Falsification of Temporal Logic Properties
CRII:CPS:FAICYS:通过时态逻辑属性的引导伪造,对支持人工智能的网络物理系统进行基于模型的验证
- 批准号:
2347294 - 财政年份:2024
- 资助金额:
$ 102.02万 - 项目类别:
Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 102.02万 - 项目类别:
Continuing Grant
Mathematically modelling tuberculosis: using lung scans to map infection, and a hybrid individual-based model to simulate infection and treatment
对结核病进行数学建模:使用肺部扫描来绘制感染图,并使用基于个体的混合模型来模拟感染和治疗
- 批准号:
MR/Y010124/1 - 财政年份:2024
- 资助金额:
$ 102.02万 - 项目类别:
Fellowship
Genome analysis-based prediction model development for response to stereotactic radiosurgery in benign brain tumors
基于基因组分析的预测模型开发,用于良性脑肿瘤立体定向放射外科治疗的反应
- 批准号:
23K08495 - 财政年份:2023
- 资助金额:
$ 102.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a physiologically based model for predicting the optimum harvest period for rice
开发基于生理的模型来预测水稻的最佳收获期
- 批准号:
23K05198 - 财政年份:2023
- 资助金额:
$ 102.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 102.02万 - 项目类别:
Standard Grant
Addressing the Challenge of Authentic Inquiry at Scale: Probing and Supporting Teaching Assistants’ Implementation of a Model-Based-Inquiry Curriculum
应对大规模真实探究的挑战:探索和支持助教——基于模型的探究课程的实施
- 批准号:
2400787 - 财政年份:2023
- 资助金额:
$ 102.02万 - 项目类别:
Standard Grant
A Developmental Model to Understand the Process of Instructor Implementation of Evidence-Based Teaching Practices
理解教师实施循证教学实践过程的发展模型
- 批准号:
2235966 - 财政年份:2023
- 资助金额:
$ 102.02万 - 项目类别:
Standard Grant