In-Procedure Personalized Atrial Digital Twin to Predict Outcome of Atrial Fibrillation Ablation
术中个性化心房数字双胞胎可预测心房颤动消融的结果
基本信息
- 批准号:EP/W000091/2
- 负责人:
- 金额:$ 155.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Atrial fibrillation (AF) is a disorder of heart rhythm that predominantly affects older people, increasing the risk of stroke and reducing quality of life. AF can be treated by radio-frequency ablation, which irreversibly destroys regions of tissue that initiate and sustain the arrhythmia. Currently, success of the ablation can only be evaluated after the therapy has been delivered. Cardiac digital twins provide a physics-based representation of the patient that is updated as more information becomes available. These twins can be used to predict how a patient will respond to an AF ablation. We propose to use digital twins of patients undergoing an AF ablation procedure, created from both pre-procedure imaging, and importantly, detailed in-procedure invasive measurements, to predict how the atria will respond to ablation. This will provide the basis for creating digital twins that can be used to guide and optimise AF ablation therapies for individual patients. Heart models for individual patients have been created by us and others, but the personalisation process is time intensive because the models have many degrees of freedom. The main challenge for this project is therefore to accelerate both personalisation and prediction so that they can be achieved within the 30-45 minute time window that is available during a clinical procedure.We will address this challenge by (1) optimising the use of information about an individual patient that can be gathered prior to the procedure, as well as information from a population of previous patients; (2) identifying model parameters that are most informative about an individual and which can be identified from clinical measurements; (3) selecting effective methods to accelerate computational simulations; and (4) a systematic investigation of novel approaches for rapid in-procedure personalisation, including state-of-the-art machine learning methods. A probabilistic approach will be taken throughout, and predictions will depend on the quality of the data and model fits. Our workflow will then be integrated to produce an easy to use software platform that is suitable for deployment in the clinical setting for a proof-of-concept clinical study in 20 patients. The project will develop the technology, generate pilot data, create a business case, and engage with patients so that we can undertake a separate and extensive clinical study to establish the effectiveness of our workflow and its suitability for routine clinical use.
心房颤动(AF)是一种心律失常,主要影响老年人,增加中风风险并降低生活质量。房颤可以通过射频消融治疗,射频消融会不可逆地破坏引发和维持心律失常的组织区域。目前,消融成功与否只能在治疗完成后进行评估。心脏数字双胞胎提供了基于物理的患者表示,随着更多信息的可用而更新。这些双胞胎可用于预测患者对AF消融的反应。我们建议使用接受AF消融术的患者的数字双胞胎,从术前成像和重要的是,详细的术中侵入性测量中创建,以预测心房对消融的反应。这将为创建数字孪生模型提供基础,可用于指导和优化个体患者的房颤消融治疗。我们和其他人已经为个体患者创建了心脏模型,但个性化过程是时间密集型的,因为模型有许多自由度。因此,该项目的主要挑战是加快个性化和预测,以便在临床程序中可用的30-45分钟时间窗口内实现。我们将通过以下方式解决这一挑战:(1)优化使用程序前收集的个体患者信息,以及来自既往患者群体的信息;(2)识别关于个体信息最多的模型参数,并且可以从临床测量中识别;(3)选择有效的方法来加速计算模拟;以及(4)对快速过程中个性化的新方法进行系统研究,包括最先进的机器学习方法。整个过程将采用概率方法,预测将取决于数据和模型拟合的质量。然后,我们的工作流程将被整合,以生成一个易于使用的软件平台,该平台适合在临床环境中部署,用于20名患者的概念验证临床研究。该项目将开发技术,生成试点数据,创建商业案例,并与患者接触,以便我们可以进行单独和广泛的临床研究,以确定我们工作流程的有效性及其对常规临床使用的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Niederer其他文献
Developing cardiac digital twin populations powered by machine learning provides electrophysiological insights in conduction and repolarization
开发由机器学习驱动的心脏数字双胞胎群体,提供了在传导和复极化方面的电生理见解
- DOI:
10.1038/s44161-025-00650-0 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:10.800
- 作者:
Shuang Qian;Devran Ugurlu;Elliot Fairweather;Laura Dal Toso;Yu Deng;Marina Strocchi;Ludovica Cicci;Richard E. Jones;Hassan Zaidi;Sanjay Prasad;Brian P. Halliday;Daniel Hammersley;Xingchi Liu;Gernot Plank;Edward Vigmond;Reza Razavi;Alistair Young;Pablo Lamata;Martin Bishop;Steven Niederer - 通讯作者:
Steven Niederer
PO-05-163 TOWARDS AUTOMATED GENERATION OF ABLATION LESION MASKS: A UNISON OF ELECTRO AND OPTIC FLOW MAPPING
PO-05-163 迈向消融病变掩模的自动化生成:电与光流映射的统一
- DOI:
10.1016/j.hrthm.2024.03.1434 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Ovais Ahmed Jaffery;Carlos E. Barrera;Cristobal Rodero;Alexander Zolotarev;Wilson W. Good;Gregory Slabaugh;Steven Niederer;Edward J. Vigmond;Caroline H. Roney - 通讯作者:
Caroline H. Roney
Leadless left ventricular endocardial pacing for cardiac resynchronization therapy: A systematic review and meta-analysis
- DOI:
10.1016/j.hrthm.2022.02.018 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:5.700
- 作者:
Nadeev Wijesuriya;Mark K. Elliott;Vishal Mehta;Baldeep S. Sidhu;Jonathan M. Behar;Steven Niederer;Christopher A. Rinaldi - 通讯作者:
Christopher A. Rinaldi
Energetic consequences of mechanical loads.
机械负载的能量后果。
- DOI:
10.1016/j.pbiomolbio.2008.02.015 - 发表时间:
2008 - 期刊:
- 影响因子:3.8
- 作者:
D. Loiselle;Edmund J. Crampin;Steven Niederer;Nicolas P. Smith;Christopher John Barclay - 通讯作者:
Christopher John Barclay
Solution to the Unknown Boundary Tractions in Myocardial Material Parameter Estimations
心肌材料参数估计中未知边界牵引的解决方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Anastasia Nasopoulou;D. Nordsletten;Steven Niederer;P. Lamata - 通讯作者:
P. Lamata
Steven Niederer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Niederer', 18)}}的其他基金
Scaling Cardiac Biomechanics Digital Twins for Personalised Medicine
扩展心脏生物力学数字孪生以实现个性化医疗
- 批准号:
EP/X012603/1 - 财政年份:2023
- 资助金额:
$ 155.09万 - 项目类别:
Research Grant
Scaling Cardiac Biomechanics Digital Twins for Personalised Medicine
扩展心脏生物力学数字孪生以实现个性化医疗
- 批准号:
EP/X012603/2 - 财政年份:2023
- 资助金额:
$ 155.09万 - 项目类别:
Research Grant
In-Procedure Personalized Atrial Digital Twin to Predict Outcome of Atrial Fibrillation Ablation
术中个性化心房数字双胞胎可预测心房颤动消融的结果
- 批准号:
EP/W000091/1 - 财政年份:2022
- 资助金额:
$ 155.09万 - 项目类别:
Research Grant
Uncertainty Quantification in Prospective and Predictive Patient Specific Cardiac Models
前瞻性和预测性患者特定心脏模型中的不确定性量化
- 批准号:
EP/P01268X/1 - 财政年份:2017
- 资助金额:
$ 155.09万 - 项目类别:
Research Grant
Personalised Model Based Optimal Lead Guidance in Cardiac Resynchronisation Therapy
基于个性化模型的心脏再同步治疗中的最佳导联指导
- 批准号:
EP/M012492/1 - 财政年份:2015
- 资助金额:
$ 155.09万 - 项目类别:
Fellowship
Modelling Cardiac Energy Supply during Heart Failure
心力衰竭期间心脏能量供应建模
- 批准号:
EP/F043929/2 - 财政年份:2010
- 资助金额:
$ 155.09万 - 项目类别:
Fellowship
Modelling Cardiac Energy Supply during Heart Failure
心力衰竭期间心脏能量供应建模
- 批准号:
EP/F043929/1 - 财政年份:2009
- 资助金额:
$ 155.09万 - 项目类别:
Fellowship
相似海外基金
Personalized Online Adaptive Learning System
个性化在线自适应学习系统
- 批准号:
23K20186 - 财政年份:2024
- 资助金额:
$ 155.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Personalized Maternal Care Decision Support System for Underserved Populations
职业:针对服务不足人群的个性化孕产妇护理决策支持系统
- 批准号:
2339992 - 财政年份:2024
- 资助金额:
$ 155.09万 - 项目类别:
Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
- 批准号:
2340519 - 财政年份:2024
- 资助金额:
$ 155.09万 - 项目类别:
Continuing Grant
Realizing Human Brain Stimulation of Deep Regions Based on Novel Personalized Electrical Computational Modelling
基于新型个性化电计算模型实现人脑深部刺激
- 批准号:
23K25176 - 财政年份:2024
- 资助金额:
$ 155.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
- 批准号:
10103541 - 财政年份:2024
- 资助金额:
$ 155.09万 - 项目类别:
EU-Funded
Modular Laser Sources For Sustainable Production Of Short Personalized Production Series (WAVETAILOR)
用于短个性化生产系列可持续生产的模块化激光源 (WAVETAILOR)
- 批准号:
10091981 - 财政年份:2024
- 资助金额:
$ 155.09万 - 项目类别:
EU-Funded
5G4PHealth: Enhanced 5G-Powered Platform for Predictive Preventive Personalized and Participatory Healthcare
5G4PHealth:增强型 5G 支持平台,用于预测、预防、个性化和参与式医疗保健
- 批准号:
10093679 - 财政年份:2024
- 资助金额:
$ 155.09万 - 项目类别:
Collaborative R&D
Biomarker-Based Platform for Early Diagnosis of Chronic Liver Disease to Enable Personalized Therapy (LIVERAIM)
基于生物标志物的慢性肝病早期诊断平台,以实现个性化治疗(LIVERAIM)
- 批准号:
10087822 - 财政年份:2024
- 资助金额:
$ 155.09万 - 项目类别:
EU-Funded
HSI Implementation and Evaluation Project: Increasing Computer Science Undergraduate Retention through Predictive Modeling and Early, Personalized Academic Interventions
HSI 实施和评估项目:通过预测建模和早期个性化学术干预提高计算机科学本科生的保留率
- 批准号:
2345378 - 财政年份:2024
- 资助金额:
$ 155.09万 - 项目类别:
Standard Grant
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
- 批准号:
2345655 - 财政年份:2024
- 资助金额:
$ 155.09万 - 项目类别:
Standard Grant